

ZEN of the Launchpad

Lessons / Examples eForth 430G2553

++

BLINK.4th

 HEX

 : SEC 400 FOR 400 FOR NEXT NEXT ;

 : ON 41 21 C! ;

 : OFF 0 21 C! ;

 : BLINK BEGIN ON SEC OFF SEC ?KEY UNTIL DROP ;

 BLINK

++

STARS

DECIMAL

: STAR 42 EMIT ;

: MARGIN CR 5 SPACES ;

: BALKEN MARGIN STAR STAR STAR STAR STAR ;

: BLIP MARGIN STAR ;

: F (--)

 BALKEN

 BLIP

 BALKEN

 BLIP

 BLIP

 CR

;

LESSON 1

(Example 1. The Universal Greeting)

: HELLO CR ." Hello, world!" ;

++

LESSON 2

(Example 2. The Big F)

: bar CR ." *****" ;

: post CR ." * " ;

: F bar post bar post post post ;

\ Type 'F' and a return on your keyboard, and you will see a large

\ F character displayed on the screen

LESSON 3

(Example 3. FIG, Forth Interest Group)

: center CR ." * " ;

: sides CR ." * *" ;

: triad1 CR ." * * *" ;

: triad2 CR ." ** *" ;

: triad3 CR ." * **" ;

: triad4 CR ." *** " ;

: quart CR ." ** **" ;

: right CR ." * ***" ;

: bigT bar center center center center center center ;

: bigI center center center center center center center ;

: bigN sides triad2 triad2 triad1 triad3 triad2 sides ;

: bigG triad4 sides post right triad1 sides triad4 ;

: FIG F bigI bigG ;

LESSON 4

(Example 4. Repeated Patterns)

\ FOR [index --] Set up loop given the index.

\ NEXT [--] Decrement index by 1. If index<0, exit.

\ If index=limit, exit loop; otherwise

\ Otherwise repeat after FOR.

\ R@ [-- index] Return the current loop index.

DECIMAL

VARIABLE WIDTH (number of asterisks to print)

: ASTERISKS (-- , print n asterisks on the screen, n=width)

 WIDTH @ (limit=width, initial index=0)

 FOR ." *" (print one asterisk at a time)

 NEXT (repeat n times)

 ;

: RECTANGLE (height width -- , print a rectangle of asterisks)

 WIDTH ! (initialize width to be printed)

 FOR CR

 ASTERISKS (print a line of asterisks)

 NEXT

 ;

: PARALLELOGRAM (height width --)

 WIDTH !

 FOR CR R@ SPACES (shift the lines to the right)

 ASTERISKS (print one line)

 NEXT

 ;

: TRIANGLE (width -- , print a triangle area with asterisks)

 FOR CR

 R@ WIDTH ! (increase width every line)

 ASTERISKS (print one line)

 NEXT

 ;

\ Try the following instructions:

\ 3 10 RECTANGLE

\ 5 18 PARALLELOGRAM

\ 12 TRIANGLE

++

LESSON 5

(Example 5. The Theory That Jack Built)

(This example shows you how to build a hiararchical structure in Forth)

DECIMAL

: the ." the " ;

: that CR ." That " ;

: this CR ." This is " the ;

: jack ." Jack Builds" ;

: summary ." Summary" ;

: flaw ." Flaw" ;

: mummery ." Mummery" ;

: k ." Constant K" ;

: haze ." Krudite Verbal Haze" ;

: phrase ." Turn of a Plausible Phrase" ;

: bluff ." Chaotic Confusion and Bluff" ;

: stuff ." Cybernatics and Stuff" ;

: theory ." Theory " jack ;

: button ." Button to Start the Machine" ;

: child ." Space Child with Brow Serene" ;

: cybernatics ." Cybernatics and Stuff" ;

: hiding CR ." Hiding " the flaw ;

: lay that ." Lay in " the theory ;

: based CR ." Based on " the mummery ;

: saved that ." Saved " the summary ;

: cloak CR ." Cloaking " k ;

: thick IF that ELSE CR ." And " THEN

 ." Thickened " the haze ;

: hung that ." Hung on " the phrase ;

: cover IF that ." Covered "

 ELSE CR ." To Cover "

 THEN bluff ;

: make CR ." To Make with " the cybernatics ;

: pushed CR ." Who Pushed " the button ;

: without CR ." Without Confusion, Exposing the Bluff" ;

: rest (pause for user interaction)

 ." . " (print a period)

 10 SPACES (followed by 10 spaces)

 KEY (wait the user to press a key)

 DROP CR CR CR ;

\ Here are new commands needed

\ KEY [-- char] Wait for a keystroke, and return the

\ ASCII code of the key pressed.

\ DROP [n --] Discard the number.

\ SPACE [--] Display a blank.

\ SPACES [n --] Display n blanks.

\ IF [f --] If the flag is 0, skip the following

\ instructions up to ELSE or THEN. If

\ flag is not 0, execute the following

\ instructions up to ELSE and skip to

\ THEN.

\ ELSE [--] Skip the following instructions

\ up to THEN.

\ THEN [--] Terminate an IF-ELSE-THEN structure

\ or an IF-THEN structure.

: cloaked cloak saved based hiding lay rest ;

: THEORY

 CR this theory rest

 this flaw lay rest

 this mummery hiding lay rest

 this summary based hiding lay rest

 this k saved based hiding lay rest

 this haze cloaked

 this bluff hung 1 thick cloaked

 this stuff 1 cover hung 0 thick cloaked

 this button make 0 cover hung 0 thick cloaked

 this child pushed

 CR ." That Made with " cybernatics without hung

 CR ." And, Shredding " the haze cloak

 CR ." Wrecked " the summary based hiding

 CR ." And Demolished " the theory rest

 ;

(Type THEORY to start)

LESSON 6

(Example 6. Help)

(How to use Forth interpreter to carry on a dialog)

: question

 CR CR ." Any more problems you want to solve?"

 CR ." What kind (sex, job, money, health) ?"

 CR

 ;

: help CR

 CR ." Hello! My name is Creating Computer."

 CR ." Hi there!"

 CR ." Are you enjoying yourself here?"

 KEY 32 OR 89 =

 CR

 IF CR ." I am glad to hear that."

 ELSE CR ." I am sorry about that."

 CR ." maybe we can brighten your visit a bit."

 THEN

 CR ." Say!"

 CR ." I can solved all kinds of problems except those dealing"

 CR ." with Greece. "

 question

 ;

: sex CR CR ." Is your problem TOO MUCH or TOO LITTLE?"

 CR

 ;

: too ; (noop for syntax smoothness)

: much CR CR ." You call that a problem?!! I SHOULD have that problem."

 CR ." If it reall y bothers you, take a cold shower."

 question

 ;

: little

 CR CR ." Why are you here!"

 CR ." You should be in Tokyo or New York of Amsterdam or"

 CR ." some place with some action."

 question

 ;

: health

 CR CR ." My advise to you is:"

 CR ." 1. Take two tablets of aspirin."

 CR ." 2. Drink plenty of fluids."

 CR ." 3. Go to bed (along) ."

 question

 ;

: job CR CR ." I can sympathize with you."

 CR ." I have to work very long every day with no pay."

 CR ." My advise to you, is to open a rental computer store."

 question

 ;

: money

 CR CR ." Sorry! I am broke too."

 CR ." Why don't you sell encyclopedias or marry"

 CR ." someone rich or stop eating, so you won't "

 CR ." need so much money?"

 question

 ;

: HELP help ;

: H help ;

: h help ;

(Type 'help' to start)

LESSON 7

Example 7. Money Exchange)

\ The first example we will use to demonstrate how numbers are

\ used in Forth is a money exchange program, which converts money

\ represented in different currencies. Let's start with the

\ following currency exchange table:

\ 30.55 NT 1 Dollar

\ 7.73 HK 1 Dollar

\ 6.47 RMB 1 Dollar

\ 1 Ounce Gold 1285 Dollars

\ 1 Ounce Silver 14.95 Dollars

DECIMAL

: NT (nNT -- $) 100 3055 */ ;

: $NT ($ -- nNT) 3055 100 */ ;

: RMB (nRMB -- $) 100 647 */ ;

: $RMB ($ -- nJmp) 647 100 */ ;

: HK (nHK -- $) 100 773 */ ;

: $HK ($ -- $) 773 100 */ ;

: GOLD (nOunce -- $) 1285 * ;

: $GOLD ($ -- nOunce) 1285 / ;

: SILVER (nOunce -- $) 1495 100 */ ;

: $SILVER ($ -- nOunce) 100 1495 */ ;

: OUNCE (n -- n, a word to improve syntax) ;

: DOLLARS (n --) . ;

\ With this set of money exchange words, we can do some tests:

\ 5 ounce gold .

\ 10 ounce silver .

\ 100 $NT .

\ 20 $RMB .

\ If you have many different currency bills in your wallet, you

\ can add then all up in dollars:

\ 1000 NT 500 HK + .S

\ 320 RMB + .S

\ DOLLARS (print out total worth in dollars

LESSON 8

(Example 8. Temperature Conversion)

\ Converting temperature readings between Celcius and Farenheit

\ is also an interesting problem. The difference between temperature

\ conversion and money exchange is that the two temperature scales

\ have an offset besides the scaling factor.

\ In the following examples, we use these Forth arithmatic operators:

\ + [n1 n2 -- n1+n2] Add n1 and n2 and leave sum on stack.

\ - [n1 n2 -- n1-n2] Subtract n2 from n1 and leave differrence

\ on stack.

\ * [n1 n2 -- n1*n2] Multiply n1 and n2 and leave product

\ on stack.

\ / [n1 n2 -- n1/n2] Divide n1 by n2 and leave quotient on

\ stack.

\ */ [n1 n2 n3 -- n1*n2/n3] Multiply n1 and n2, divide the product

\ by n3 and leave quotient on the stack.

: F>C (nFarenheit -- nCelcius)

 32 -

 10 18 */

 ;

: C>F (nCelcius -- nFarenheit)

 18 10 */

 32 +

 ;

\ Try these commands

\ 90 F>C . shows the temperature in a hot summer day and

\ 0 C>F . shows the temperature in a cold winter night.

LESSON 9

(Example 9. Weather Reporting.)

\ IF-ELSE-THEN structure can be nested.

: WEATHER (nFarenheit --)

 DUP 55 <

 IF ." Too cold!" DROP

 ELSE 85 <

 IF ." About right."

 ELSE ." Too hot!"

 THEN

 THEN

 ;

\ You can type the following instructions and get some responses from the

\ computer:

\ 90 WEATHER Too hot!

\ 70 WEATHER About right.

\ 32 WEATHER Too cold.

LESSON 10

(Example 10. Print the multiplication table)

(More examples on FOR-NEXT loops.)

DECIMAL

: ONEROW (nRow --)

 CR

 DUP 3 U.R 3 SPACES

 1 11

 FOR 2DUP *

 4 U.R

 1 +

 NEXT

 DROP ;

: MULTIPLY (--)

 CR CR 6 SPACES

 1 11

 FOR DUP 4 U.R 1 +

 NEXT DROP

 1 11

 FOR DUP ONEROW 1 +

 NEXT DROP

 ;

(Type MULTIPLY to print the multiplication table)

LESSON 11

(Example 11. Calendars)

(Print monthly calendars for any month in years 1950-2128.)

DECIMAL

VARIABLE JULIAN (0 is 1/1/1950, good until 2050)

VARIABLE LEAP (1 for a leap year, 0 otherwise.)

(1461 CONSTANT 4YEARS (number of days in 4 years)

: YEAR (YEAR --, compute Julian date and leap year)

 DUP

 1949 - 1461 4 */MOD (days since 1/1/1949)

 365 - JULIAN ! (0 for 1/1/1950)

 3 = (modulus 3 for a leap year)

 IF 1 ELSE 0 THEN (leap year)

 LEAP !

 DUP 2000 = (2000 is not a leap year)

 IF 0 LEAP ! THEN

 2000 > (adjust due to year 2000)

 IF ELSE -1 JULIAN +! THEN

 ;

: FIRST (MONTH -- 1ST, 1st of a month from Jan. 1)

 DUP 1 =

 IF DROP 0 EXIT THEN (0 for Jan. 1)

 DUP 2 =

 IF DROP 31 EXIT THEN (31 for Feb. 1)

 DUP 3 =

 IF DROP 59 LEAP @ + EXIT THEN (59/60 for Mar. 1)

 4 - 30624 1000 */

 90 + LEAP @ + (Apr. 1 to Dec. 1)

 ;

: STARS 60 FOR 42 EMIT NEXT ; (form the boarder)

: HEADER (--) (print title bar)

 CR STARS CR

 ." SUN MON TUE WED THU FRI SAT"

 CR STARS CR (print weekdays)

 ;

: BLANKS (MONTH --) (skip days not in this month)

 FIRST JULIAN @ + (Julian date of 1st of month)

 7 MOD 8 * SPACES ; (skip colums if not Sunday)

: DAYS (MONTH --) (print days in a month)

 DUP FIRST (days of 1st this month)

 SWAP 1 + FIRST (days of 1st next month)

 OVER - 1 - (loop to print the days)

 1 SWAP (first day count --)

 FOR 2DUP + 1 -

 JULIAN @ + 7 MOD (which day in the week?)

 IF ELSE CR THEN (start a new line if Sunday)

 DUP 8 U.R (print day in 8 column field)

 1 +

 NEXT

 2DROP ; (discard 1st day in this month)

: MONTH (N --) (print a month calendar)

 HEADER DUP BLANKS (print header)

 DAYS CR STARS CR ; (print days)

: JANUARY YEAR 1 MONTH ;

: FEBRUARY YEAR 2 MONTH ;

: MARCH YEAR 3 MONTH ;

: APRIL YEAR 4 MONTH ;

: MAY YEAR 5 MONTH ;

: JUNE YEAR 6 MONTH ;

: JULY YEAR 7 MONTH ;

: AUGUST YEAR 8 MONTH ;

: SEPTEMBER YEAR 9 MONTH ;

: OCTOBER YEAR 10 MONTH ;

: NOVEMBER YEAR 11 MONTH ;

: DECEMBER YEAR 12 MONTH ;

\ To print the calender of April 1999, type:

\ 2011 APRIL

LESSON 12

(Example 12. Sines and Cosines)

\ Sines and cosines of angles are among the most often encountered

\ transdential functions, useful in drawing circles and many other

\ different applications. They are usually computed using floating

\ numbers for accuracy and dynamic range. However, for graphics

\ applications in digital systems, single integers in the range from

\ -32768 to 32767 are sufficient for most purposes. We shall

\ study the computation of sines and cosines using the single

\ integers.

\ The value of sine or cosine of an angle lies between -1.0 and +1.0.

\ We choose to use the integer 10000 in decimal to represent 1.0

\ in the computation so that the sines and cosines can be represented

\ with enough precision for most applications. Pi is therefore

\ 31416, and 90 degree angle is represented by 15708. Angles

\ are first reduced in to the range from -90 to +90 degrees,

\ and then converted to radians in the ranges from -15708 to

\ +15708. From the radians we compute the values of sine and

\ cosine.

\ The sines and cosines thus computed are accurate to 1 part in

\ 10000. This algorithm was first published by John Bumgarner

\ in Forth Dimensions, Volume IV, No. 1, p. 7.

DECIMAL

31415 CONSTANT PI

10000 CONSTANT 10K

VARIABLE XS (square of scaled angle)

: KN (n1 n2 -- n3, n3=10000-n1*x*x/n2 where x is the angle)

 XS @ SWAP / (x*x/n2)

 NEGATE 10K */ (-n1*x*x/n2)

 10K + (10000-n1*x*x/n2)

 ;

: (SIN) (x -- sine*10K, x in radian*10K)

 DUP DUP 10K */ (x*x scaled by 10K)

 XS ! (save it in XS)

 10K 72 KN (last term)

 42 KN 20 KN 6 KN (terms 3, 2, and 1)

 10K */ (times x)

 ;

: (COS) (x -- cosine*10K, x in radian*10K)

 DUP 10K */ XS ! (compute and save x*x)

 10K 56 KN 30 KN 12 KN 2 KN (serial expansion)

 ;

: SIN (degree -- sine*10K)

 PI 180 */ (convert to radian)

 (SIN) (compute sine)

 ;

: COS (degree -- cosine*10K)

 PI 180 */

 (COS)

 ;

\ To test the routines, type:

\ 90 SIN . 10000

\ 45 SIN . 7070

\ 30 SIN . 4999

\ 0 SIN . 0

\ 90 COS . 0

\ 45 COS . 7072

\ 0 COS . 10000

LESSON 13

(Example 13. Square Root)

\ There are many ways to take the square root of an integer. The

\ special routine here was first discovered by Wil Baden. Wil

\ used this routine as a programming challenge while attending

\ a FORML Conference in Taiwan, 1984.

\ This algorithm is based on the fact that the square of n+1 is equal

\ to the sum of the square of n plus 2n+1. You start with an 0 on

\ the stack and add to it 1, 3, 5, 7, etc., until the sum is greater

\ than the integer you wished to take the root. That number when

\ you stopped is the square root.

: SQRT (n -- root)

 65025 OVER U< (largest square it can handle)

 IF DROP 255 EXIT THEN (safety exit)

 >R (save sqaure)

 1 1 (initial square and root)

 BEGIN (set n1 as the limit)

 OVER R@ U< (next square)

 WHILE

 DUP 2 * 1 + (n*n+2n+1)

 ROT + SWAP

 1 + (n+1)

 REPEAT

 SWAP DROP

 R> DROP

 ;

LESSON 14

(Example 14. Radix for Number Conversions)

DECIMAL

(: DECIMAL 10 BASE ! ;)

(: HEX 16 BASE ! ;)

: OCTAL 8 BASE ! ;

: BINARY 2 BASE ! ;

\ Try converting numbers among different radices:

\ DECIMAL 12345 HEX U.

\ HEX ABCD DECIMAL U.

\ DECIMAL 100 BINARY U.

\ BINARY 101010101010 DECIMAL U.

\ Real programmers impress on novices by carrying a HP calculator

\ which can convert numbers between decimal and hexadecimal. A

\ Forth computer has this calculator built in, besides other functions.

LESSON 15

Example 15. ASCII Character Table)

DECIMAL

: CHARACTER (n --)

 DUP EMIT HEX DUP 3 .R

 OCTAL DUP 4 .R

 DECIMAL 3 .R

 2 SPACES

 ;

: LINE (n --)

 CR

 5 FOR DUP CHARACTER

 16 +

 NEXT

 DROP ;

: TABLE (--)

 32

 15 FOR DUP LINE

 1 +

 NEXT

 DROP ;

LESSON 16

(Example 16. Random Numbers)

\ Random numbers are often used in computer simulations and computer

\ games. This random number generator was published in Leo Brodie's

\ 'Starting Forth'.

DECIMAL

VARIABLE RND (seed)

: RANDOM (-- n, a random number within 0 to 65536)

 RND @ 31421 * (RND*31421)

 6927 + (RND*31421+6926, mod 65536)

 DUP RND ! (refresh he seed)

 ;

: CHOOSE (n1 -- n2, a random number within 0 to n1)

 RANDOM UM* (n1*random to a double product)

 SWAP DROP (discard lower part)

 ; (in fact divide by 65536)

HERE RND !

\ To test the routine, type

\ 100 CHOOSE .

\ 100 CHOOSE .

\ 100 CHOOSE .

\ and varify that the results are randomly distributed betweem 0 and

\ 99 .

HERE RND ! (initialize seed)

LESSON 17

(Example 17. Guess a Number)

(Require CHOOSE from Lesson16.txt)

DECIMAL

: GetNumber (-- n)

 BEGIN

 CR ." Enter a Number: " (show message)

 QUERY BL WORD NUMBER? (get a string)

 UNTIL (repeat until a valid number)

 ;

(With this utility instruction, we can write a game 'Guess a Number.')

: InitialNumber (-- n , set up a number for the player to guess)

 CR CR CR ." What limit do you want?"

 GetNumber (ask the user to enter a number)

 CR ." I have a number between 0 and " DUP .

 CR ." Now you try to guess what it is."

 CR

 CHOOSE (choose a random number)

 ; (between 0 and limit)

: Check (n1 -- , allow player to guess, exit when the guess is correct)

 BEGIN CR ." Please enter your guess."

 GetNumber

 2DUP = (equal?)

 IF 2DROP (discard both numbers)

 CR ." Correct!!!"

 EXIT

 THEN

 OVER <

 IF CR ." Too low."

 ELSE CR ." Too high!"

 THEN CR

 0 UNTIL (always repeat)

 ;

: Greet (--)

 CR CR CR ." GUESS A NUMBER"

 CR ." This is a number guessing game. I'll think"

 CR ." of a number between 0 and any limit you want."

 CR ." (It should be smaller than 32000.)"

 CR ." Then you have to guess what it is."

 ;

: GUESS (-- , the game)

 Greet

 BEGIN InitialNumber (set initial number)

 Check (let player guess)

 CR CR ." Do you want to play again? (Y/N) "

 KEY (get one key)

 32 OR 110 = (exit if it is N or n)

 UNTIL

 CR CR ." Thank you. Have a good day." (sign off)

 CR

 ;

\ Type 'GUESS' will initialize the game and the computer will entertain

\ a user for a while. Note the use of the indefinite loop structure:

\ BEGIN <repeat-clause> [f] UNTIL

\ You can jump out of the infinite loop by the instruction EXIT, which

\ skips all the instructions in a Forth definition up to ';', which

\ terminates this definition and continues to the next definition.)

\ Morse Code on the LaunchPad.

\ Connections: P2.0 --->------8 Ohm Speaker-----<---GND

DECIMAL

VARIABLE /freq

VARIABLE duration

: init (--)

 1 $2A C! 1 $2E C! (P2.0 connected to TA1.0)

 $80 $182 ! (TA1.0 toggle mode)

 $1000 $192 ! (TA1CCR0, period)

 500 /freq ! 100 duration ! ; (init them, or app save fails!)

: tone $210 $180 ! ; (SMCLK, count up)

: stop (--) 0 $180 ! 0 $21 C! ; (stop tone and LEDs)

: pause (d --) FOR /freq @ FOR NEXT NEXT ;

: red 1 $21 C! ;

: green $40 $21 C! ;

: short duration @ pause ;

: long duration @ 3 * pause ;

: dit init red tone short stop short ;

: dah init green tone long stop short ;

: .. stop long ; (inter-element gap between the dots and dashes)

\ Morse Alphabet

: A dit dah .. ;

: B dah dit dit dit .. ;

: C dah dit dah dit .. ;

: D dah dit dit .. ;

: E dit .. ;

: F dit dit dah dit .. ;

: G dah dah dit .. ;

: H dit dit dit dit .. ;

: I dit dit ;

: J dit dah dah dah .. ;

: K dah dit dah .. ;

: L dit dah dit dit .. ;

: M dah dah .. ;

: N dah dit .. ;

: O dah dah dah .. ;

: P dit dah dah dit .. ;

: Q dah dah dit dah .. ;

: R dit dah dit .. ;

: S dit dit dit .. ;

: T dah .. ;

: U dit dit dah .. ;

: V dit dit dit dah .. ;

: W dit dah dah .. ;

: X dah dit dit dah .. ;

: Y dah dit dah dah .. ;

: Z dah dah dit dit .. ;

: _0 dah dah dah dah dah .. ;

: _1 dit dah dah dah dah .. ;

: _2 dit dit dah dah dah .. ;

: _3 dit dit dit dah dah .. ;

: _4 dit dit dit dit dah .. ;

: _5 dit dit dit dit dit .. ;

: _6 dah dit dit dit dit .. ;

: _7 dah dah dit dit dit .. ;

: _8 dah dah dah dit dit .. ;

: _9 dah dah dah dah dit .. ;

: // stop 7 FOR short NEXT ; (Pause between words)

\ Commonly used two letter procedural signals

: AA A A ; (End Of Line)

: AAA A A A ; (Full Stop)

: AR A R ; (End of message)

: AS A S ; (Stand by; wait)

: BK B K ; (Break)

: BT B T ; (Separation - break - between address and text; text +

signature)

: CL C L ; (Going off the air: clear)

: CQ C .. Q ; (Calling any amateur radio station)

: DE D E ; (This or From)

: GB G B ; (Good bye, God Bless)

: GD G D ; (Good, Good Day)

: GE G E ; (Good Evening)

: HH H H ; (Error sending. 8 dits, Transm. cont., last word correctly

sent.)

: II I I ; (Short form of above <HH>)

: IMI I M I ; (Repeat; I say again. Difficult or unusual words or groups.)

: KA K A ; (Beginning of message)

: KN K N ; (Go only, invite a specific station to transmit)

: NR N R ; (Number follows)

: OK O K ; (Correct)

: SGD S G D ; (Signed)

: SK S K ; (Out; clear - end of communications, no reply expected.)

: SOS dit dit dit dah dah dah dit dit dit .. ;

(Mayday! Without character pauses!)

: VE V E ; (Understood)

: >> F O R T H // I S // S U P E R ;

: TITANIC BEGIN SOS // ?KEY UNTIL DROP ;

: ZEN

 Z E N // F O R // _4 _3 _0 // L A U N C H P A D // AR

;

(finis)

LESSONS SUMMARY

(Example 1. The Universal Greeting) \ =============================

DECIMAL

: HELLO CR ." Hello, world!" ;

(Example 2. The Big F) \ ==

: bar CR ." *****" ;

: post CR ." * " ;

: F bar post bar post post post ;

(Type 'F' and a return on your keyboard, and you will see a large)

(F character displayed on the screen)

(Example 3. FIG, Forth Interest Group) \ ==========================

: center CR ." * " ;

: sides CR ." * *" ;

: triad1 CR ." * * *" ;

: triad2 CR ." ** *" ;

: triad3 CR ." * **" ;

: triad4 CR ." *** " ;

: quart CR ." ** **" ;

: right CR ." * ***" ;

: bigT bar center center center center center center ;

: bigI center center center center center center center ;

: bigN sides triad2 triad2 triad1 triad3 triad2 sides ;

: bigG triad4 sides post right triad1 sides triad4 ;

: FIG F bigI bigG ;

(Example 4. Repeated Patterns) \ ===================================

FOR [index --] Set up loop given the index.

NEXT [--] Decrement index by 1. If index<0,

exit. If index=limit, exit loop; otherwise

 Otherwise repeat after FOR.

R@ [-- index] Return the current loop index.)

VARIABLE WIDTH (number of asterisks to print)

: ASTERISKS (-- , print n asterisks on the screen, n=width)

 WIDTH @ (limit=width, initial index=0)

 FOR ." *" (print one asterisk at a time)

 NEXT (repeat n times)

 ;

: RECTANGLE (height width -- , print a rectangle of asterisks)

 WIDTH ! (initialize width to be printed)

 FOR CR

 ASTERISKS (print a line of asterisks)

 NEXT

 ;

: PARALLELOGRAM (height width --)

 WIDTH !

 FOR CR R@ SPACES (shift the lines to the right)

 ASTERISKS (print one line)

 NEXT

 ;

: TRIANGLE (width -- , print a triangle area with asterisks)

 FOR CR

 R@ WIDTH ! (increase width every line)

 ASTERISKS (print one line)

 NEXT

 ;

(Try the following instructions

 3 10 RECTANGLE

 5 18 PARALLELOGRAM

 12 TRIANGLE)

(Example 5. The Theory That Jack Built) \ ==========================

(This example shows you how to build a hiararchical structure in Forth)

DECIMAL

: the ." the " ;

: that CR ." That " ;

: this CR ." This is " the ;

: jack ." Jack Builds" ;

: summary ." Summary" ;

: flaw ." Flaw" ;

: mummery ." Mummery" ;

: k ." Constant K" ;

: haze ." Krudite Verbal Haze" ;

: phrase ." Turn of a Plausible Phrase" ;

: bluff ." Chaotic Confusion and Bluff" ;

: stuff ." Cybernatics and Stuff" ;

: theory ." Theory " jack ;

: button ." Button to Start the Machine" ;

: child ." Space Child with Brow Serene" ;

: cybernatics ." Cybernatics and Stuff" ;

: hiding CR ." Hiding " the flaw ;

: lay that ." Lay in " the theory ;

: based CR ." Based on " the mummery ;

: saved that ." Saved " the summary ;

: cloak CR ." Cloaking " k ;

: thick IF that ELSE CR ." And " THEN

 ." Thickened " the haze ;

: hung that ." Hung on " the phrase ;

: cover IF that ." Covered "

 ELSE CR ." To Cover "

 THEN bluff ;

: make CR ." To Make with " the cybernatics ;

: pushed CR ." Who Pushed " button ;

: without CR ." Without Confusion, Exposing the Bluff" ;

: rest (pause for user interaction)

 ." . " (print a period)

 10 SPACES (followed by 10 spaces)

 KEY (wait the user to press a key)

 DROP CR CR CR ;

(

KEY [-- char] Wait for a keystroke, and return the

 ASCII code of the key pressed.

DROP [n --] Discard the number.

SPACE [--] Display a blank.

SPACES [n --] Display n blanks.

IF [f --] If the flag is 0, skip the following

 instructions up to ELSE or THEN. If

 flag is not 0, execute the following

 instructions up to ELSE and skip to

 THEN.

ELSE [--] Skip the following instructions

 up to THEN.

THEN [--] Terminate an IF-ELSE-THEN structure

 or an IF-THEN structure.

)

: cloaked cloak saved based hiding lay rest ;

: THEORY

 CR this theory rest

 this flaw lay rest

 this mummery hiding lay rest

 this summary based hiding lay rest

 this k saved based hiding lay rest

 this haze cloaked

 this bluff hung 1 thick cloaked

 this stuff 1 cover hung 0 thick cloaked

 this button make 0 cover hung 0 thick cloaked

 this child pushed

 CR ." That Made with " cybernatics without hung

 CR ." And, Shredding " the haze cloak

 CR ." Wrecked " the summary based hiding

 CR ." And Demolished " the theory rest

 ;

(Type THEORY to start)

(Example 6. Help) \ ===

(How to use Forth interpreter to carry on a dialog)

: question

 CR CR ." Any more problems you want to solve?"

 CR ." What kind (sex, job, money, health) ?"

 CR

 ;

: help CR

 CR ." Hello! My name is Creating Computer."

 CR ." Hi there!"

 CR ." Are you enjoying yourself here?"

 KEY 32 OR 89 =

 CR

 IF CR ." I am glad to hear that."

 ELSE CR ." I am sorry about that."

 CR ." maybe we can brighten your visit a bit."

 THEN

 CR ." Say!"

 CR ." I can solved all kinds of problems except those dealing"

 CR ." with Greece. "

 question

 ;

: sex CR CR ." Is your problem TOO MUCH or TOO LITTLE?"

 CR

 ;

: too ; (noop for syntax smoothness)

: much CR CR ." You call that a problem?!! I SHOULD have that problem."

 CR ." If it reall y bothers you, take a cold shower."

 question

 ;

: little

 CR CR ." Why are you here!"

 CR ." You should be in Tokyo or New York of Amsterdam or"

 CR ." some place with some action."

 question

 ;

: health

 CR CR ." My advise to you is:"

 CR ." 1. Take two tablets of aspirin."

 CR ." 2. Drink plenty of fluids."

 CR ." 3. Go to bed (along) ."

 question

 ;

: job CR CR ." I can sympathize with you."

 CR ." I have to work very long every day with no pay."

 CR ." My advise to you, is to open a rental computer store."

 question

 ;

: money

 CR CR ." Sorry! I am broke too."

 CR ." Why don't you sell encyclopedias of marry"

 CR ." someone rich or stop eating, so you won't "

 CR ." need so much money?"

 question

 ;

: HELP help ;

: H help ;

: h help ;

(Type 'help' to start)

(Example 7. Money Exchange ==

The first example we will use to demonstrate how numbers are

used in Forth is a money exchange program, which converts money

represented in different currencies. Let's start with the

following currency exchange table:

 33.55 NT 1 Dollar

 7.73 HK 1 Dollar

 9.47 RMB 1 Dollar

 1 Ounce Gold 285 Dollars

 1 Ounce Silver 4.95 Dollars)

DECIMAL

: NT (nNT -- $) 100 3355 */ ;

: $NT ($ -- nNT) 3355 100 */ ;

: RMB (nRMB -- $) 100 947 */ ;

: $RMB ($ -- nJmp) 947 100 */ ;

: HK (nHK -- $) 100 773 */ ;

: $HK ($ -- $) 773 100 */ ;

: GOLD (nOunce -- $) 285 * ;

: $GOLD ($ -- nOunce) 285 / ;

: SILVER (nOunce -- $) 495 100 */ ;

: $SILVER ($ -- nOunce) 100 495 */ ;

: OUNCE (n -- n, a word to improve syntax) ;

: DOLLARS (n --) . ;

(With this set of money exchange words, we can do some tests:

 5 ounce gold .

 10 ounce silver .

 100 $NT .

 20 $RMB .

If you have many different currency bills in your wallet, you

can add then all up in dollars:

 1000 NT 500 HK + .S

 320 RMB + .S

 DOLLARS (print out total worth in dollars)

(Example 8. Temperature Conversion ======================================

Converting temperature readings between Celcius and Farenheit

is also an interesting problem. The difference between temperature

conversion and money exchange is that the two temperature scales

have an offset besides the scaling factor.)

: F>C (nFarenheit -- nCelcius)

 32 -

 10 18 */

 ;

: C>F (nCelcius -- nFarenheit)

 18 10 */

 32 +

 ;

(Try these commands

90 F>C . shows the temperature in a hot summer day and

0 C>F . shows the temperature in a cold winter night.

In the above examples, we use the following Forth arithmatic

operators:

+ [n1 n2 -- n1+n2] Add n1 and n2 and leave sum on stack.

- [n1 n2 -- n1-n2] Subtract n2 from n1 and leave differrence

 on stack.

* [n1 n2 -- n1*n2] Multiply n1 and n2 and leave product

 on stack.

/ [n1 n2 -- n1/n2] Divide n1 by n2 and leave quotient on

 stack.

*/ [n1 n2 n3 -- n1*n2/n3] Multiply n1 and n2, divide the product

 by n3 and leave quotient on the stack.

.S [... -- ...] Show the topmost 4 numbers on stack.

)

(Example 9. Weather Reporting.) \ =====================================

: WEATHER (nFarenheit --)

 DUP 55 <

 IF ." Too cold!" DROP

 ELSE 85 <

 IF ." About right."

 ELSE ." Too hot!"

 THEN

 THEN

 ;

(You can type the following instructions and get some responses from the

computer:

 90 WEATHER Too hot!

 70 WEATHER About right.

 32 WEATHER Too cold.

)

(Example 10. Print the multiplication table) \ =========================

: ONEROW (nRow --)

 CR

 DUP 3 .R 3 SPACES

 1 11

 FOR 2DUP *

 4 .R

 1 +

 NEXT

 DROP ;

: MULTIPLY (--)

 CR CR 6 SPACES

 1 11

 FOR DUP 4 .R 1 +

 NEXT DROP

 1 11

 FOR DUP ONEROW 1 +

 NEXT DROP

 ;

(Type MULTIPLY to print the multiplication table)

(Example 11. Calendars) \ ==

(Print weekly calendars for any month in any year.)

DECIMAL

VARIABLE JULIAN (0 is 1/1/1950, good until 2050)

VARIABLE LEAP (1 for a leap year, 0 otherwise.)

(1461 CONSTANT 4YEARS (number of days in 4 years)

: YEAR (YEAR --, compute Julian date and leap year)

 DUP

 1949 - 1461 4 */MOD (days since 1/1/1949)

 365 - JULIAN ! (0 for 1/1/1950)

 3 = (modulus 3 for a leap year)

 IF 1 ELSE 0 THEN (leap year)

 LEAP !

 DUP 2000 = (2000 is not a leap year)

 IF 0 LEAP ! THEN

 2001 < (correction due to 2000)

 IF ELSE -1 JULIAN +! THEN

 ;

: FIRST (MONTH -- 1ST, 1st of a month from Jan. 1)

 DUP 1 =

 IF DROP 0 EXIT THEN (0 for Jan. 1)

 DUP 2 =

 IF DROP 31 EXIT THEN (31 for Feb. 1)

 DUP 3 =

 IF DROP 59 LEAP @ + EXIT THEN (59/60 for Mar. 1)

 4 - 30624 1000 */

 90 + LEAP @ + (Apr. 1 to Dec. 1)

 ;

: STARS 60 FOR 42 EMIT NEXT ; (form the boarder)

: HEADER (--) (print title bar)

 CR STARS CR

 ." SUN MON TUE WED THU FRI SAT"

 CR STARS CR (print weekdays)

 ;

: BLANKS (MONTH --) (skip days not in this month)

 FIRST JULIAN @ + (Julian date of 1st of month)

 7 MOD 8 * SPACES ; (skip colums if not Sunday)

: DAYS (MONTH --) (print days in a month)

 DUP FIRST (days of 1st this month)

 SWAP 1 + FIRST (days of 1st next month)

 OVER - 1 - (loop to print the days)

 1 SWAP (first day count --)

 FOR 2DUP + 1 -

 JULIAN @ + 7 MOD (which day in the week?)

 IF ELSE CR THEN (start a new line if Sunday)

 DUP 8 U.R (print day in 8 column field)

 1 +

 NEXT

 2DROP ; (discard 1st day in this month)

: MONTH (N --) (print a month calendar)

 HEADER DUP BLANKS (print header)

 DAYS CR STARS CR ; (print days)

: JANUARY YEAR 1 MONTH ;

: FEBRUARY YEAR 2 MONTH ;

: MARCH YEAR 3 MONTH ;

: APRIL YEAR 4 MONTH ;

: MAY YEAR 5 MONTH ;

: JUNE YEAR 6 MONTH ;

: JULY YEAR 7 MONTH ;

: AUGUST YEAR 8 MONTH ;

: SEPTEMBER YEAR 9 MONTH ;

: OCTOBER YEAR 10 MONTH ;

: NOVEMBER YEAR 11 MONTH ;

: DECEMBER YEAR 12 MONTH ;

(To print the calender of April 1999, type:

 1999 APRIL

)

(Example 12. Sines and Cosines ======================================

Sines and cosines of angles are among the most often encountered

transdential functions, useful in drawing circles and many other

different applications. They are usually computed using floating

numbers for accuracy and dynamic range. However, for graphics

applications in digital systems, single integers in the range from

-32768 to 32767 are sufficient for most purposes. We shall

study the computation of sines and cosines using the single

integers.

The value of sine or cosine of an angle lies between -1.0 and +1.0.

We choose to use the integer 10000 in decimal to represent 1.0

in the computation so that the sines and cosines can be represented

with enough precision for most applications. Pi is therefore

31416, and 90 degree angle is represented by 15708. Angles

are first reduced in to the range from -90 to +90 degrees,

and then converted to radians in the ranges from -15708 to

+15708. From the radians we compute the values of sine and

cosine.

The sines and cosines thus computed are accurate to 1 part in

10000. This algorithm was first published by John Bumgarner

in Forth Dimensions, Volume IV, No. 1, p. 7.

31415 CONSTANT PI

10000 CONSTANT 10K)

VARIABLE XS (square of scaled angle)

: KN (n1 n2 -- n3, n3=10000-n1*x*x/n2 where x is the angle)

 XS @ SWAP / (x*x/n2)

 10000 */ NEGATE (-n1*x*x/n2)

 10000 + (10000-n1*x*x/n2)

 ;

: (SIN) (x -- sine*10K, x in radian*10K)

 DUP DUP 10000 */ (x*x scaled by 10K)

 XS ! (save it in XS)

 10000 72 KN (last term)

 42 KN 20 KN 6 KN (terms 3, 2, and 1)

 10000 */ (times x)

 ;

: (COS) (x -- cosine*10K, x in radian*10K)

 DUP 10000 */ XS ! (compute and save x*x)

 10000 56 KN 30 KN 12 KN 2 KN (serial expansion)

 ;

: SIN (degree -- sine*10K)

 31415 180 */ (convert to radian)

 (SIN) (compute sine)

 ;

: COS (degree -- cosine*10K)

 31415 180 */

 (COS)

 ;

(To test the routines, type:

 90 SIN . 9999

 45 SIN . 7070

 30 SIN . 5000

 0 SIN . 0

 90 COS . 0

 45 COS . 7071

 0 COS . 10000)

(Example 13. Square Root ===

There are many ways to take the square root of an integer. The

special routine here was first discovered by Wil Baden. Wil

used this routine as a programming challenge while attending

a FORML Conference in Taiwan, 1984.

This algorithm is based on the fact that the square of n+1 is equal

to the sum of the square of n plus 2n+1. You start with an 0 on

the stack and add to it 1, 3, 5, 7, etc., until the sum is greater

than the integer you wished to take the root. That number when

you stopped is the square root.

)

: SQRT (n -- root)

 65025 OVER U< (largest square it can handle)

 IF DROP 255 EXIT THEN (safety exit)

 >R (save sqaure)

 1 1 (initial square and root)

 BEGIN (set n1 as the limit)

 OVER R@ U< (next square)

 WHILE

 DUP CELLS 1 + (n*n+2n+1)

 ROT + SWAP

 1 + (n+1)

 REPEAT

 SWAP DROP

 R> DROP

 ;

(Example 14. Radix for Number Conversions) \ =====================

DECIMAL

(: DECIMAL 10 BASE ! ;)

(: HEX 16 BASE ! ;)

: OCTAL 8 BASE ! ;

: BINARY 2 BASE ! ;

(Try converting numbers among different radices:

 DECIMAL 12345 HEX U.

 HEX ABCD DECIMAL U.

 DECIMAL 100 BINARY U.

 BINARY 101010101010 DECIMAL U.

Real programmers impress on novices by carrying a HP calculator

which can convert numbers between decimal and hexadecimal. A

Forth computer has this calculator built in, besides other functions.

)

(Example 15. ASCII Character Table) \ =============================

: CHARACTER (n --)

 DUP EMIT HEX DUP 3 .R

 OCTAL DUP 4 .R

 DECIMAL 3 .R

 2 SPACES

 ;

: LINE (n --)

 CR

 5 FOR DUP CHARACTER

 16 +

 NEXT

 DROP ;

: TABLE (--)

 32

 15 FOR DUP LINE

 1 +

 NEXT

 DROP ;

(Example 16. Random Numbers ==

Random numbers are often used in computer simulations and computer

games. This random number generator was published in Leo Brodie's

'Starting Forth'.

)

VARIABLE RND (seed)

HERE RND ! (initialize seed)

: RANDOM (-- n, a random number within 0 to 65536)

 RND @ 31421 * (RND*31421)

 6927 + (RND*31421+6926, mod 65536)

 DUP RND ! (refresh he seed)

 ;

: CHOOSE (n1 -- n2, a random number within 0 to n1)

 RANDOM UM* (n1*random to a double product)

 SWAP DROP (discard lower part)

 ; (in fact divide by 65536)

(To test the routine, type

 100 CHOOSE .

 100 CHOOSE .

 100 CHOOSE .

and varify that the results are randomly distributed betweem 0 and

99 .)

(Example 17. Guess a Number) \ =====================================

: GetNumber (-- n)

 BEGIN

 CR ." Enter a Number: " (show message)

 QUERY BL WORD NUMBER? (get a string)

 UNTIL (repeat until a valid number)

 ;

(With this utility instruction, we can write a game 'Guess a Number.')

: InitialNumber (-- n , set up a number for the player to guess)

 CR CR CR ." What limit do you want?"

 GetNumber (ask the user to enter a number)

 CR ." I have a number between 0 and " DUP .

 CR ." Now you try to guess what it is."

 CR

 CHOOSE (choose a random number)

 ; (between 0 and limit)

: Check (n1 -- , allow player to guess, exit when the guess is correct)

 BEGIN CR ." Please enter your guess."

 GetNumber

 2DUP = (equal?)

 IF 2DROP (discard both numbers)

 CR ." Correct!!!"

 EXIT

 THEN

 OVER <

 IF CR ." Too low."

 ELSE CR ." Too high!"

 THEN CR

 0 UNTIL (always repeat)

 ;

: Greet (--)

 CR CR CR ." GUESS A NUMBER"

 CR ." This is a number guessing game. I'll think"

 CR ." of a number between 0 and any limit you want."

 CR ." (It should be smaller than 32000.)"

 CR ." Then you have to guess what it is."

 ;

: GUESS (-- , the game)

 Greet

 BEGIN InitialNumber (set initial number)

 Check (let player guess)

 CR CR ." Do you want to play again? (Y/N) "

 KEY (get one key)

 32 OR 110 = (exit if it is N or n)

 UNTIL

 CR CR ." Thank you. Have a good day." (sign off)

 CR

 ;

(Type 'GUESS' will initialize the game and the computer will entertain

a user for a while. Note the use of the indefinite loop structure:

 BEGIN <repeat-clause> [f] UNTIL

You can jump out of the infinite loop by the instruction EXIT, which

skips all the instructions in a Forth definition up to ';', which

terminates this definition and continues to the next definition.)

\ end

