User Tools

Site Tools


en:pfw:random_20generator_20completeness_20test

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
en:pfw:random_20generator_20completeness_20test [2023-09-04 18:18] – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1en:pfw:random_20generator_20completeness_20test [2023-09-04 18:18] (current) – ↷ Seite von pfw:random_20generator_20completeness_20test nach en:pfw:random_20generator_20completeness_20test verschoben uho
Line 1: Line 1:
 +{{pfw:banner.png}}
 +==== Random Generator Completeness Test ====
 +
 +There are many different tests to assess the quality of a random-number generator. The Diehard suite of tests from Prof. G. Marsaglia was the first in wide-spread use, and a lot more tests have been developed since. Presented here is a test for completeness. Linear Pseudorandom Number Generators have an exact amount of numbers they generate before the return to their starting point (wrap around). A good generator generates all possible numbers exactly once before wrapping around. During the development of specific variants of such generators it is useful to be able to do such a check.
 +
 +The method used here is brute-force. It needs a decent CPU and at least 512 MB of continuous memory to run in a reasonable time. But a Raspberry Pi has enough memory and is fast enough to run a check in reasonable time.
 +
 +== It functions thus: ==
 +
 +<code>
 +    clear the 512 MB bit-array
 +    reset the random generator under test
 +    4294967296 0 DO
 +        get a random number from generator under test
 +        set bit with generated number as index in the bit-array
 +    LOOP
 +    
 +    reset popcount array
 +    134217728 0 DO
 +        get next 32b value from array
 +        do a popcount of this number
 +        add 1 to the corresponding counter in the popcount array
 +    LOOP
 +    
 +    show the popcount array in a clear way
 +</code>
 +
 +== Reporting the results: ==
 +
 +The report is the only 'smart' part of this program. It does a popcount of each of the 134217728 32 bits numbers in the array. As a second step it shows an overview of the totals of each of the 33 possible populations counts.
 +
 +The first report shows a 32 bit LPNG which is complete: there are 134217727 population bit counts with a value of 32, and 1 popcount with a value of 31. This is exactly as expected. These generators have a period of 2<sup>32</sup>-1, the 0 is never generated; so there is 1 popcount with the value 31 and the rest with value 32.
 +
 +<code>
 +  0=>            1=>            2=>                                                 
 +  3=>            4=>            5=>                                                 
 +  6=>            7=>            8=>                                                 
 +  9=>           0 10=>           0 11=>                                                 
 + 12=>           0 13=>           0 14=>                                                 
 + 15=>           0 16=>           0 17=>                                                 
 + 18=>           0 19=>           0 20=>                                                 
 + 21=>           0 22=>           0 23=>                                                 
 + 24=>           0 25=>           0 26=>                                                 
 + 27=>           0 28=>           0 29=>                                                 
 + 30=>           0 31=>           1 32=>   134217727
 +</code>
 +
 +To raise complexity of a random-generator, it is possible to multiply the output with a constant factor. For an example see the random generator of MeCrisp-quintus. You cannot just use any multiplication factor. The following table shows the effect of using a wrong multiplication factor. In this case the generator only generates 25% of the possible numbers (but these 4 times in a complete cycle). The factor used in the MeCrisp generator is obviously correct!
 +
 +<code>
 +  0=>            1=>            2=>           0
 +  3=>            4=>            5=>           0
 +  6=>            7=>            8=>   134217728
 +  9=>           0 10=>           0 11=>           0
 + 12=>           0 13=>           0 14=>           0
 + 15=>           0 16=>           0 17=>           0
 + 18=>           0 19=>           0 20=>           0
 + 21=>           0 22=>           0 23=>           0
 + 24=>           0 25=>           0 26=>           0
 + 27=>           0 28=>           0 29=>           0
 + 30=>           0 31=>           0 32=>           0
 +</code>
 +
 +And this is how the popcounts look with a high quality 32 bit generator with a 256 bit domain ( **xoxhiro256** from D. Blackman and S. Vigna). The normal distribution can almost be felt...
 +
 +<code>
 +  0=>            1=>            2=>           0
 + 3=>            4=>            5=>           6
 + 6=>          52  7=>         237  8=>        1406
 + 9=>        6292 10=>       24445 11=>       84668
 +12=>      254086 13=>      672015 14=>     1567053
 +15=>     3230909 16=>     5898377 17=>     9542529
 +18=>    13661188 19=>    17303565 20=>    19326867
 +21=>    18960579 22=>    16292092 23=>    12174977
 +24=>     7844886 25=>     4313613 26=>     1994819
 +27=>      763860 28=>      233027 29=>       55479
 +30=>        9614 31=>        1031 32=>          56
 +</code>
 +
 +== Runtime and performance observations ==
 +
 +The runtime on a Raspberry 3b+ with wabiForth for this check is around 24 minutes (and 5 sec to generate the report). The limiting factor is not the speed of the CPU, but the speed of the memory-bus and cache. This routine is the most cache-**in**efficient routine possible. In >99,99% of cases setting a bit in the array requires the reading and writing off a complete 64 byte cache line. Setting a bit 4294967296 times takes a while... The resulting memory bandwidth is <sub>380</sub> MB/s. Well under the 1100 MB/s available to wabiForth on a Raspberry pi 3+. But taking into account that the cache-system is stressed to the max for all aspects, this is respectable and leaves only little room for improvement.