
1

Easy Forth
by Nick Morgan
 View on GitHub Page PDF

Introduction 2

Adding Some Numbers 2

Defining Words 5

Stack Manipulation 6

Generating Output 9

Conditionals and Loops 12

Variables and Constants 18

Arrays 21

Keyboard Input 22

 added Debugger 24

Snake! 26

The End 39

 added Forth Word List 40

 added sort alphabetically 42

 Canvas example 24x24 44

This is a brilliant Forth Learning Documentation.

Including a limited Forth implementation in Javascript online, so no

download needed to try some Forth,

and the Javascript software written to be found on github.

Here just with some added explanations for reading, some links from a

word list, and for print

plus the added Game Canvas area for easier understanding of the

software example,

added by Juergen Pintaske, ExMark as v2 (work in progress)

And to see what is happening inside a small Debugger

Thanks for the good work Nick, adding a very nice learning resource for

anybody who wants to try Forth.
Easy Forth v16_A5_withexp_comments

https://twitter.com/skilldrick
https://github.com/skilldrick/easyforth
http://skilldrick.github.io/easyforth/#introduction
http://skilldrick.github.io/easyforth/#adding-some-numbers
http://skilldrick.github.io/easyforth/#defining-words
http://skilldrick.github.io/easyforth/#stack-manipulation
http://skilldrick.github.io/easyforth/#generating-output
http://skilldrick.github.io/easyforth/#conditionals-and-loops
http://skilldrick.github.io/easyforth/#variables-and-constants
http://skilldrick.github.io/easyforth/#arrays
http://skilldrick.github.io/easyforth/#keyboard-input
http://skilldrick.github.io/easyforth/#snake
http://skilldrick.github.io/easyforth/#the-end

2

Introduction

This small ebook is here to teach you a programming language called

Forth. Forth is a language unlike most others. It’s not functional or

object oriented, it doesn’t have type-checking, and it basically has zero

syntax. It was written in the 70s, but is still used today for certain

applications.

Why would you want to learn such an odd language? Every new

programming language you learn helps you think about problems in new

ways. Forth is very easy to learn, but it requires you to think in a

different way than you’re used to. That makes it a perfect language to

broaden your coding horizons.

This book includes a simple implementation of Forth I wrote in

JavaScript. It’s by no means perfect, and is missing a lot of the

functionality you’d expect in a real Forth system. It’s just here to give

you an easy way to try out the examples. (If you’re a Forth expert, please

contribute here and make it better!)

I’m going to assume that you know at least one other programming

language, and have a basic idea of how stacks work as a data structure.

Adding Some Numbers

The thing that separates Forth from most other languages is its use of the

stack. In Forth, everything revolves around the stack. Any time you type

a number, it gets pushed onto the stack. If you want to add two numbers

together, typing + takes the top two numbers off the stack, adds them,

and puts the result back on the stack.

Let’s take a look at an example. Type (don’t copy-paste) the following

into the interpreter, typing Enter after each line.

1

2

3

http://www.forth.com/resources/apps/more-applications.html
http://www.forth.com/resources/apps/more-applications.html
https://github.com/skilldrick/easyforth

3

<- Top

Every time you type a line followed by the Enter key, the Forth

interpreter executes that line, and appends the string ok to let you know

there were no errors. You should also notice that as you execute each

line, the area at the top fills up with numbers. That area is our

visualization of the stack. It should look like this:

1 2 3 <- Top

Now, into the same interpreter, type a single

 + (1)

followed by the Enter key. The top two elements on the stack, 2 and 3,

have been replaced by 5.

1 5 <- Top

At this point, your editor window should look like this:

1 ok 2 ok 3 ok + ok

Type + again and press Enter, and the top two elements will be replaced

by 6. If you type + one more time, Forth will try to pop the top two

elements off the stack, even though there’s only one element on the

stack! This results in a Stack underflow error:

1 ok 2 ok 3 ok + ok + ok + Stack underflow

Forth doesn’t force you to type every token as a separate line. Type the

following into the next editor, followed by the Enter key:

4

123 456 +

<- Top

The stack should now look like this:

579 <- Top

This style, where the operator appears after the operands, is known as

Reverse-Polish notation. Let’s try something a bit more complicated, and

calculate 10 * (5 + 2). Type the following into the interpreter:

 * (2)

5 2 + 10 *

<- Top

One of the nice things about Forth is that the order of operations is

completely based on their order in the program. For example, when

executing 5 2 + 10 *, the interpreter pushes 5 to the stack, then 2, then

adds them and pushes the resulting 7, then pushes 10 to the stack, then

multiplies 7 and 10. Because of this, there’s no need for parentheses to

group operators with lower precedence.

Most Forth words affect the stack in some way. Some take values off the

stack, some leave new values on the stack, and some do a mixture of

both. These “stack effects” are commonly represented using comments

of the form

(before -- after).

https://en.wikipedia.org/wiki/Reverse_Polish_notation

5

 For example, + is (n1 n2 -- sum) - n1 and n2 are the top two

numbers on the stack, and sum is the value left on the stack.

Defining Words

The syntax of Forth is extremely straightforward. Forth code is

interpreted as a series of space-delimited words. Almost all non-

whitespace characters are valid in words. When the Forth interpreter

reads a word, it checks to see if a definition exists in an internal structure

known as the Dictionary. If it is found, that definition is executed.

Otherwise, the word is assumed to be a number, and it is pushed onto the

stack. If the word cannot be converted to a number, an error occurs.

You can try that out yourself below. Type foo (an unrecognized word)

and press enter.

<- Top

You should see something like this:

foo foo ?

foo ? means that Forth was unable to find a definition for foo, and it

wasn’t a valid number.

We can create our own definition of foo using two special words called

: (colon) and ; (semicolon). : (3, 4)

is our way of telling Forth we want to create a definition. The first word

after the : becomes the definition name, and the rest of the words (until

the ;) make up the body of the definition. It’s conventional to include

6

two spaces between the name and the body of the definition. Try

entering the following:

: foo 100 + ;

1000 foo

foo foo foo

Warning: A common mistake is to miss out the space before the ;

word. Because Forth words are space delimited and can contain most

characters, +; is a perfectly valid word and is not parsed as two separate

words.

<- Top

As you’ve hopefully figured out, our foo word simply adds 100 to the

value on top of the stack. It’s not very interesting, but it should give you

an idea of how simple definitions work.

Stack Manipulation

Now we can start taking a look at some of Forth’s predefined words.

First, let’s look at some words for manipulating the elements at the top

of the stack.

dup (n -- n n) (5)

dup is short for “duplicate” – it duplicates the top element of the stack.

For example, try this out:

1 2 3 dup

<- Top

7

You should end up with the following stack:

1 2 3 3 <- Top

drop (n --) (6)

drop simply drops the top element of the stack. Running:

1 2 3 drop

gives you a stack of:

1 2 <- Top

<- Top

swap (n1 n2 -- n2 n1) (7)

swap, as you may have guessed, swaps the top two elements of the stack.

For example:

1 2 3 4 swap

will give you:

1 2 4 3 <- Top

8

<- Top

over (n1 n2 -- n1 n2 n1) (8)

over is a bit less obvious: it takes the second element from the top of the

stack and duplicates it to the top of the stack. Running this:

1 2 3 over

will result in this:

1 2 3 2 <- Top

<- Top

rot (n1 n2 n3 -- n2 n3 n1) (9)

Finally, rot “rotates” the top three elements of the stack. The third

element from the top of the stack gets moved to the top of the stack,

pushing the other two elements down.

1 2 3 rot

gives you:

9

2 3 1 <- Top

<- Top

Generating Output

Next, let’s look at some words for outputting text to the console.

. (n --) (period) (10)

The simplest output word in Forth is .. You can use . to output the top

of the stack in the output of the current line. For example, try running

this (make sure to include all the spaces!):

1 . 2 . 3 . 4 5 6 . . .

<- Top

You should see this:

1 . 2 . 3 . 4 5 6 . . . 1 2 3 6 5 4 ok

Going through this in order, we push 1, then pop it off and output it.

Then we do the same with 2 and 3. Next we push 4, 5, and 6 onto the

stack. We then pop them off and output them one-by-one. That’s why

the last three numbers in the output are reversed: the stack is last in, first

out.

10

emit (c --) (11)

emit can be used to output numbers as ascii characters. Just like .

outputs the number at the top of the stack, emit outputs that number as

an ascii character. For example:

 33 119 111 87 emit emit emit emit

<- Top

I won’t give the output here so as to not ruin the surprise. This could also

be written as:

87 emit 111 emit 119 emit 33 emit

Unlike ., emit doesn’t output any space after each character, enabling

you to build up arbitrary strings of output.

cr (--) (12)

cr is short for carriage return – it simply outputs a newline:

cr 100 . cr 200 . cr 300 .

<- Top

This will output:

cr 100 . cr 200 . cr 300 . 100 200 300 ok

11

." (--) (13)

Finally we have ." – a special word for outputting strings. The ." word

works differently inside definitions to interactive mode. ." marks the

beginning of a string to output, and the end of the string is marked by ".

The closing " isn’t a word, and so doesn’t need to be space-delimited.

Here’s an example:

: say-hello ." Hello there!" ;

say-hello

<- Top

You should see the following output

say-hello Hello there! ok

We can combine .", ., cr, and emit to build up more complex output:

: print-stack-top cr dup ." The top of the stack is " .

 cr ." which looks like '" dup emit ." ' in ascii " ;

48 print-stack-top

<- Top

Running this should give you the following output:

48 print-stack-top The top of the stack is 48 which looks like '0' in ascii

ok

12

Conditionals and Loops

Now onto the fun stuff! Forth, like most other languages, has

conditionals and loops for controlling the flow of your program. To

understand how they work, however, first we need to understand

booleans in Forth.

Booleans (14) (0 = false)

There’s actually no boolean type in Forth. The number 0 is treated as

false, and any other number is true, although the canonical true value is -

1 (all boolean operators return 0 or -1).

To test if two numbers are equal, you can use

= (15)

3 4 = .

5 5 = .

This should output:

3 4 = . 0 ok 5 5 = . -1 ok

<- Top

You can use < and > for less than and greater than. < checks to see if the

second item from the top of the stack is less than the top item of the

stack, and vice versa for >:

< (16)

13

> (17)

3 4 < .

3 4 > .

3 4 < . -1 ok 3 4 > . 0 ok

<- Top

The boolean operators And, Or, and Not are available as and, or, and

invert:

AND (18)

OR (19)

INVERT (20)

3 4 < 20 30 < and .

3 4 < 20 30 > or .

3 4 < invert .

The first line is the equivalent of 3 < 4 & 20 < 30 in a C-based

language. The second line is the equivalent of 3 < 4 | 20 > 30. The

third line is the equivalent of !(3 < 4).

and, or, and invert are all bitwise operations. For well-formed flags (0

and -1) they’ll work as expected, but they’ll give incorrect results for

arbitrary numbers.

<- Top

14

if then (21) (23)

Now we can finally get onto conditionals. Conditionals in Forth can only

be used inside definitions. The simplest conditional statement in Forth is

if then, which is equivalent to a standard if statement in most

languages. Here’s an example of a definition using if then. In this

example, we’re also using the mod word, which returns the modulo of the

top two numbers on the stack. In this case, the top number is 5, and the

other is whatever was placed on the stack before calling buzz?.

Therefore, 5 mod 0 = is a boolean expression that checks to see if the

top of the stack is divisible by 5.

: buzz? 5 mod 0 = if ." Buzz" then ;

3 buzz?

4 buzz?

5 buzz?

<- Top

This will output:

3 buzz? ok 4 buzz? ok 5 buzz? Buzz ok

It’s important to note that the then word marks the end of the if

statement. This makes it equivalent to fi in Bash or end in Ruby, for

example.

15

Another important thing to realize is that if consumes the top value on

the stack when it checks to see if it’s true or false.

if else then (22)

if else then is equivalent to an if/else statement in most languages.

Here’s an example of its use:

: is-it-zero? 0 = if ." Yes!" else ." No!" then ;

0 is-it-zero?

1 is-it-zero?

2 is-it-zero?

<- Top

This outputs:

0 is-it-zero? Yes! ok 1 is-it-zero? No! ok 2 is-it-zero?

No! ok

This time, the if clause (consequent) is everything between if and else,

and the else clause (alternative) is everything between else and then.

do loop (24) (25)

do loop in Forth most closely resembles a for loop in most C-based

languages. In the body of a do loop, the special word i pushes the

current loop index onto the stack.

The top two values on the stack give the starting value (inclusive) and

ending value (exclusive) for the i value. The starting value is taken from

the top of the stack. Here’s an example:

: loop-test 10 0 do i . loop ;

loop-test

16

<- Top

This should output:

loop-test 0 1 2 3 4 5 6 7 8 9 ok

The expression 10 0 do i . loop is roughly equivalent to:

for (int i = 0; i < 10; i++) {

 print(i);

}

Fizz Buzz

We can write the classic Fizz Buzz program easily using a do loop:

: fizz? 3 mod 0 = dup if ." Fizz" then ;

: buzz? 5 mod 0 = dup if ." Buzz" then ;

: fizz-buzz? dup fizz? swap buzz? or invert ;

: do-fizz-buzz 25 1 do cr i fizz-buzz? if i . then loop ;

do-fizz-buzz

<- Top

fizz? checks to see if the top of the stack is divisible by 3 using 3 mod

0 =. It then uses dup to duplicate this result. The top copy of the value is

consumed by if. The second copy is left on the stack and acts as the

return value of fizz?.

https://en.wikipedia.org/wiki/Fizz_buzz

17

If the number on top of the stack is divisible by 3, the string "Fizz" will

be output, otherwise there will be no output.

buzz? does the same thing but with 5, and outputs the string "Buzz".

fizz-buzz? calls dup to duplicate the value on top of the stack, then

calls fizz?, converting the top copy into a boolean. After this, the top of

the stack consists of the original value, and the boolean returned by

fizz?. swap swaps these, so the original top-of-stack value is back on

top, and the boolean is underneath. Next we call buzz?, which replaces

the top-of-stack value with a boolean flag. Now the top two values on

the stack are booleans representing whether the number was divisible by

3 or 5. After this, we call or to see if either of these is true, and invert

to negate this value. Logically, the body of fizz-buzz? is equivalent to:

!(x % 3 == 0 || x % 5 == 0)

Therefore, fizz-buzz? returns a boolean indicating if the argument is

not divisible by 3 or 5, and thus should be printed. Finally, do-fizz-

buzz loops from 1 to 25, calling fizz-buzz? on i, and outputting i if

fizz-buzz? returns true.

If you’re having trouble figuring out what’s going on inside fizz-

buzz?, the example below might help you to understand how it works.

All we’re doing here is executing each word of the definition of fizz-

buzz? on a separate line. As you execute each line, watch the stack to

see how it changes:

: fizz? 3 mod 0 = dup if ." Fizz" then ;

: buzz? 5 mod 0 = dup if ." Buzz" then ;

4

dup

fizz?

swap

buzz?

or

invert

<- Top

18

Here’s how each line affects the stack:

4 4 <- Top

dup 4 4 <- Top

fizz? 4 0 <- Top

swap 0 4 <- Top

buzz? 0 0 <- Top

or 0 <- Top

invert -1 <- Top

Remember, the final value on the stack is the return value of the fizz-

buzz? word. In this case, it’s true, because the number was not divisible

by 3 or 5, and so should be printed.

Here’s the same thing but starting with 5:

5 5 <- Top

dup 5 5 <- Top

fizz? 5 0 <- Top

swap 0 5 <- Top

buzz? 0 -1 <- Top

or -1 <- Top

invert 0 <- Top

In this case the original top-of-stack value was divisible by 5, so nothing

should be printed.

Variables and Constants

Forth also allows you to save values in variables and constants.

Variables allow you to keep track of changing values without having to

store them on the stack. Constants give you a simple way to refer to a

value that won’t change.

19

Variables

Because the role of local variables is generally played by the stack,

variables in Forth are used more to store state that may be needed across

multiple words.

Defining variables is simple:

variable balance (26)

This basically associates a particular memory location with the name

balance. balance is now a word, and all it does is to push its memory

location onto the stack:

variable balance

balance

<- Top

You should see the value 1000 on the stack. This Forth implementation

arbitrarily starts storing variables at the memory location 1000.

The word ! stores a value at the memory location referenced by a

variable, and the word @ fetches the value from a memory location:

variable balance

123 balance !

balance @

<- Top

20

This time you should see the value 123 on the stack. 123 balance

pushes the value and the memory location onto the stack, and ! stores

that value at that memory location. Likewise, @ retrieves the value based

on the memory location, and pushes that value onto the stack. If you’ve

used C or C++, you can think of balance as a pointer that is

dereferenced by @.

The word ? is defined as @ . and it prints the current value of a variable.

The word +! is used to increase the value of a variable by a certain

amount (like += in C-based languages).

variable balance

123 balance !

balance ?

50 balance +!

balance ?

<- Top

Run this code and you should see:

variable balance ok 123 balance ! ok balance ? 123 ok 50 balance +! ok

balance ? 173 ok

Constants

If you have a value that doesn’t change, you can store it as a constant.

Constants are defined in one line, like this:

42 constant answer (27)

This creates a new constant called answer with the value 42. Unlike

variables, constants just represent values, rather than memory locations,

so there’s no need to use @.

21

42 constant answer

2 answer *

<- Top

Running this will push the value 84 on the stack. answer is treated as if

it was the number it represents (just like constants and variables in other

languages).

Arrays

Forth doesn’t exactly support arrays, but it does allow you to allocate a

zone of contiguous memory, a lot like arrays in C. To allocate this

memory, use the allot word.

Cells (28)

Allot (29)

! (30)

variable numbers

3 cells allot

10 numbers 0 cells + !

20 numbers 1 cells + !

30 numbers 2 cells + !

40 numbers 3 cells + !

<- Top

22

This example creates a memory location called numbers, and reserves

three extra memory cells after this location, giving a total of four

memory cells. (cells just multiplies by the cell-width, which is 1 in this

implementation.)

numbers 0 + gives the address of the first cell in the array. 10 numbers

0 + ! stores the value 10 in the first cell of the array.

We can easily write words to simplify array access:

variable numbers

3 cells allot

: number (offset -- addr) cells numbers + ;

10 0 number !

20 1 number !

30 2 number !

40 3 number !

? (31)

2 number ?

<- Top

number takes an offset into numbers and returns the memory address at

that offset. 30 2 number ! stores 30 at offset 2 in numbers, and 2

number ? prints the value at offset 2 in numbers.

Keyboard Input

Forth has a special word called key, which is used for accepting

keyboard input. When the key word is executed, execution is paused

until a key is pressed. Once a key is pressed, the key code of that key is

pushed onto the stack. Try out the following:

23

key (32)

key . key . key .

<- Top

When you run this line, you’ll notice that at first nothing happens. This

is because the interpreter is waiting for your keyboard input. Try hitting

the A key, and you should see the keycode for that key, 65, appear as

output on the current line. Now hit B, then C, and you should see the

following:

key . key . key . 65 66 67 ok

Printing keys with

begin until (33) (34)

Forth has another kind of loop called begin until. This works like a

while loop in C-based languages. Every time the word until is hit, the

interpreter checks to see if the top of the stack is non-zero (true). If it is,

it jumps back to the matching begin. If not, execution continues.

Here’s an example of using begin until to print key codes:

: print-keycode begin key dup . 32 = until ;

print-keycode

<- Top

24

This will keep printing key codes until you press space. You should see

something like this:

print-keycode 80 82 73 78 84 189 75 69 89 67 79 68 69 32 ok

key waits for key input, then dup duplicates the keycode from key. We

then use . to output the top copy of the keycode, and 32 = to check to

see if the keycode is equal to 32. If it is, we break out of the loop,

otherwise we loop back to begin.

A Debugger – adaptable to your own needs
(added by Juergen Pintaske to these pages, fine with VFX and

VFXTESTAPP.exe – here still an issue – has to be tested again.)

Seeing what is happening is the most important – especially if something

goes wrong. There are 2 words in EASYforth that have not been

described yet and can be used:

>R (to R) Take the top value on the Data Stack

 and transfer it to the Return Stack

R> (from R to D) Take the value on the Return Stack

 and move it to the Data Stack

And now we can understand how this little Debugger works – all data is

displayed on one line:

First: Define a word ?????,

Send 3 Spaces,

Display 6 Variables TV1 TV2 TV3, TV4 TV5 TV6

and 4 spaces after it

then transfer the top 3 stack values on the Return Stack

to the Data Stack using R>

and then each time DUPlicate the value on the Data Stack,

display one, put the second

 one back onto the RSTACK

 with a Space in between

Send 4 Spaces after these 3 values

Now transfer the top 8 values on the Data Stack to the

Return Stack

 And do the same trick as before:

 Fronm R to D, DUPlicate, print one, leave other on the

Data Stack where it was before

25

 The same for all 8 values that had been moved from the

DStack to the RStack.

The Debugger came from another applicastion as

The Debugger ?????

: ????? 3 spaces tvar1 @ . tvar2 @ . tvar3 @ . tvar4 @ .

4 spaces R> R> R> DUP >R . Space DUP >R . space DUP >R .

4 SPACES >R >R >R >R >R >R >R >R DUP . R> DUP . R> DUP .

R> DUP . R> DUP . R> DUP . R> DUP . R> DUP . ;

One additional trick is to move FFFF as first value

to the RSTACK and to the DStack to indicate the

bottom position when the Debugger is called.

And now adapt this general Debugger to use the

variables in EASYFORTH by copying the variables in

SNAKE to show in this Debugger and have the 6

Variables displayed used in SNAKE

(copy the SNAKE Variables now and put 6 variables to

be displayed)

(snake-x-head snake-y-head apple-x apple-y

direction length)

: ?? 3 spaces TV1 @ . TV2 @ . TV3 @ . TV4 @ . TV5 @

. TV6 @ . 4 spaces R> R> R> DUP >R . Space

DUP >R . space DUP >R . 4 SPACES >R

>R >R >R >R >R >R >R R> DUP . R> DUP . R> DUP . R>

DUP . R> DUP . R> DUP . R> DUP . R> DUP . ;

(into)

: ?? 3 spaces snake-x-head @ . snake-y-head .

apple-x @ . apple-y @ . direction @ . length @

. 4 spaces R> R> R> DUP >R .

Space DUP >R . space DUP >R .

4 SPACES >R >R >R >R >R >R >R >R R> DUP . R>

DUP . R> DUP . R> DUP . R> DUP . R> DUP . R> DUP . R>

DUP . ;

\ And as I have found out, it breaks easyFORTH

26

Snake!

Now it’s time to put it all together and make a game! Rather than having

you type all the code, I’ve pre-loaded it into the editor.

Before we look at the code, try playing the game. To start the game,

execute the word start. Then use the arrow keys to move the snake. If

you lose, you can run start again.

<- Top
variable snake-x-head ok

500 cells allot ok

Ok

variable snake-y-head ok

500 cells allot ok

Ok

variable apple-x ok

variable apple-y ok

ok

0 constant left ok

1 constant up ok

2 constant right ok

3 constant down ok

Ok

24 constant width ok

24 constant height ok

Ok

variable direction ok

variable length ok

ok

: snake-x (offset -- address)

cells snake-x-head + ; ok

ok

: snake-y (offset -- address)

cells snake-y-head + ; ok

ok

27

: convert-x-y (x y -- offset) 24 cells * + ; ok

: draw (color x y --) convert-x-y graphics + ! ; ok

: draw-white (x y --) 1 rot rot draw ; ok

: draw-black (x y --) 0 rot rot draw ; ok

Ok

: draw-walls

 width 0

 do

 i 0 draw-black

 i height 1 - draw-black

 loop

 height 0

 do

 0 i draw-black

 width 1 - i draw-black

 loop

; ok

Ok

: initialize-snake

 4 length !

 length @ 1 + 0

 do

 12 i - i snake-x !

 12 i snake-y !

 loop

 right direction ! ; ok

ok

: set-apple-position apple-x ! apple-y ! ; ok

Ok

: initialize-apple 4 4 set-apple-position ; ok

Ok

: initialize

 width 0

 do

 height 0

 do

 j i draw-white

 loop

 loop

 draw-walls

 initialize-snake

 initialize-apple ; ok

28

ok

: move-up -1 snake-y-head +! ; ok

: move-left -1 snake-x-head +! ; ok

: move-down 1 snake-y-head +! ; ok

: move-right 1 snake-x-head +! ; ok

Ok

: move-snake-head direction @

 left over = if move-left else

 up over = if move-up else

 right over = if move-right else

 down over = if move-down

 then then then then drop

; ok

Ok

\ Move each segment of the snake forward by one ok

: move-snake-tail 0 length @

 do

 i snake-x @ i 1 + snake-x !

 i snake-y @ i 1 + snake-y !

 -1 +loop ; ok

Ok

: is-horizontal direction @ dup

 left = swap

 right = or ; ok

ok

: is-vertical direction @ dup

 up = swap

 down = or ; ok

ok

: turn-up is-horizontal if up direction ! then ; ok

: turn-left is-vertical if left direction ! then ; ok

: turn-down is-horizontal if down direction ! then ; ok

: turn-right is-vertical if right direction ! then ; ok

Ok

: change-direction (key --)

 37 over = if turn-left else

 38 over = if turn-up else

 39 over = if turn-right else

 40 over = if turn-down

 then then then then drop ; ok

29

ok

: check-input

last-key @ change-direction

0 last-key ! ; ok

Ok

\ get random x or y position within playable area ok

: random-position (-- pos)

width 4 - random 2 + ; ok

ok

: move-apple

apple-x @ apple-y @ draw-white

random-position random-position

set-apple-position ; ok

ok

: grow-snake 1 length +! ; ok

Ok

: check-apple

 snake-x-head @ apple-x @ =

 snake-y-head @ apple-y @ =

 and if

 move-apple

 grow-snake

 then

; ok

Ok

: check-collision (-- flag)

 \ get current x/y position

 snake-x-head @ snake-y-head @

 \ get color at current position

 convert-x-y graphics + @

 \ leave boolean flag on stack

 0 =

; ok

Ok

: draw-snake

 length @ 0 do

 i snake-x @ i snake-y @ draw-black

 loop

 length @ snake-x @

 length @ snake-y @

30

 draw-white

; ok

Ok

: draw-apple

 apple-x @ apple-y @ draw-black ; ok

ok

ok

: game-loop (--)

 begin

 draw-snake

 draw-apple

 100 sleep

 check-input

 move-snake-tail

 move-snake-head

 check-apple

 check-collision

 until

 ." Game Over" ; ok

Ok

: start initialize game-loop ; ok

Ok

variable snake-x-head

500 cells allot

variable snake-y-head

Before we delve too deeply into this code, two disclaimers. First, this is

terrible Forth code. I’m by no means a Forth expert, so there’s probably

all kinds of things I’m doing in completely the wrong way. Second, this

game uses a few non-standard techniques in order to interface with

JavaScript. I’ll go through these now.

Non-Standard Additions

The Canvas

31

You may have noticed that this editor is different from the others: it has

an HTML5 Canvas element built in. I’ve created a very simple memory-

mapped interface for drawing onto this canvas. The canvas is split up

into 24 x 24 “pixels” which can be black or white. The first pixel is

found at the memory address given by the variable graphics, and the

rest of the pixels are offsets from the variable. So, for example, to draw a

white pixel in the top-left corner you could run

1 graphics !

<- Top

The game uses the following words to draw to the canvas:

: convert-x-y (x y -- offset) 24 cells * + ; (101)

: draw (color x y --) convert-x-y graphics + ! ;

: draw-white (x y --) 1 rot rot draw ; (102)

: draw-black (x y --) 0 rot rot draw ; (103)

For example, 3 4 draw-white draws a white pixel at the coordinates (3,

4). The y coordinate is multiplied by 24 to get the row, then the x

coordinated is added to get the column.

Non-Blocking Keyboard Input

The Forth word key blocks, so is unsuitable for a game like this. I’ve

added a variable called last-key which always holds the value of the

last key to be pressed. last-key is only updated while the interpreter is

running Forth code.

Random Number Generation

32

The Forth standard doesn’t define a way of generating random numbers,

so I’ve added a word called random (range -- n) that takes a range

and returns a random number from 0 to range - 1. For example, 3

random could return 0, 1, or 2.

sleep (ms --) (35)

Finally, I’ve added a blocking sleep word that pauses execution for the

number of milliseconds given.

The Game Code

Now we can work through the code from start to finish.

Variables and Constants

The start of the code just sets up some variables and constants:

(variables - snake-x-head, snake-y-head – apple-x, apple-y – direction,

length -)

(constants for - left, up, right, down – field width and height -)

variable snake-x-head

500 cells allot

variable snake-y-head

500 cells allot

variable apple-x

variable apple-y

0 constant left

1 constant up

2 constant right

3 constant down

24 constant width

24 constant height

variable direction

variable length

33

snake-x-head and snake-y-head are memory locations used to store

the x and y coordinates of the head of the snake. 500 cells of memory are

alloted after these two locations to store the coordinates of the tail of the

snake.

Next we define two words for accessing memory locations representing

the body of the snake.

: snake-x (offset -- address)

 cells snake-x-head + ;

: snake-y (offset -- address)

 cells snake-y-head + ;

Just like the number word earlier, these two words are used to access

elements in the arrays of snake segments. After this come some words

for drawing to the canvas, described above.

We use constants to refer to the four directions (left, up, right, and

down), and a variable direction to store the current direction.

Initialization

After this we initialize everything:

: draw-walls

 width 0 do

 i 0 draw-black

 i height 1 - draw-black

 loop

 height 0 do

 0 i draw-black

 width 1 - i draw-black

 loop ;

: initialize-snake

 4 length !

 length @ 1 + 0 do

 12 i - i snake-x !

 12 i snake-y !

 loop

 right direction ! ;

34

: set-apple-position apple-x ! apple-y ! ;

: initialize-apple 4 4 set-apple-position ;

: initialize

 width 0 do

 height 0 do

 j i draw-white

 loop

 loop

 draw-walls

 initialize-snake

 initialize-apple ;

draw-walls uses two do/loops to draw the horizontal and vertical

walls, respectively.

initialize-snake sets the length variable to 4, then loops from 0 to

length + 1 filling in the starting snake positions. The snake positions

are always kept one longer than the length so we can grow the snake

easily.

set-apple-position and initialize-apple set the initial position of

the apple to (4,4).

Finally, initialize fills everything in white and calls the three

initialization words.

Moving the Snake

Here’s the code for moving the snake based on the current value of

direction:

: move-up -1 snake-y-head +! ;

: move-left -1 snake-x-head +! ;

: move-down 1 snake-y-head +! ;

: move-right 1 snake-x-head +! ;

: move-snake-head direction @

 left over = if move-left else

 up over = if move-up else

 right over = if move-right else

35

 down over = if move-down

 then then then then drop ;

\ Move each segment of the snake forward by one

: move-snake-tail 0 length @ do

 i snake-x @ i 1 + snake-x !

 i snake-y @ i 1 + snake-y !

 -1 +loop ;

move-up, move-left, move-down, and move-right just add or subtract

one from the x or y coordinate of the snake head. move-snake-head

inspects the value of direction and calls the appropriate move-* word.

This over = if pattern is an idiomatic way of doing case statements in

Forth.

move-snake-tail goes through the array of snake positions backwards,

copying each value forward by 1 cell. This is called before we move the

snake head, to move each segment of the snake forward one space. It

uses a do/+loop, a variation of a do/loop that pops the stack on every

iteration and adds that value to the next index, instead of incrementing

by 1 each time. So 0 length @ do -1 +loop loops from length to 0

in increments of -1.

Keyboard Input

The next section of code takes the keyboard input and changes the snake

direction if appropriate.

: is-horizontal direction @ dup

 left = swap

 right = or ;

: is-vertical direction @ dup

 up = swap

 down = or ;

: turn-up is-horizontal if up direction ! then ;

: turn-left is-vertical if left direction ! then ;

: turn-down is-horizontal if down direction ! then ;

: turn-right is-vertical if right direction ! then ;

: change-direction (key --)

36

 37 over = if turn-left else

 38 over = if turn-up else

 39 over = if turn-right else

 40 over = if turn-down

 then then then then drop ;

: check-input

 last-key @ change-direction

 0 last-key ! ;

is-horizontal and is-vertical check the current status of the

direction variable to see if it’s a horizontal or vertical direction.

The turn-* words are used to set a new direction, but use is-

horizontal and is-vertical to check the current direction first to see

if the new direction is valid. For example, if the snake is moving

horizontally, setting a new direction of left or right doesn’t make

sense.

change-direction takes a key and calls the appropriate turn-* word if

the key was one of the arrow keys. check-input does the work of

getting the last key from the last-key pseudo-variable, calling change-

direction, then setting last-key to 0 to indicate that the most recent

keypress has been dealt with.

The Apple

The next code is used for checking to see if the apple has been eaten, and

if so, moving it to a new (random) location. Also, if the apple has been

eaten we grow the snake.

\ get random x or y position within playable area

: random-position (-- pos)

 width 4 - random 2 + ;

: move-apple

 apple-x @ apple-y @ draw-white

 random-position random-position

 set-apple-position ;

: grow-snake 1 length +! ;

37

: check-apple (-- flag)

 snake-x-head @ apple-x @ =

 snake-y-head @ apple-y @ =

 and if

 move-apple

 grow-snake

 then ;

random-position generates a random x or y coordinate in the range of

2 to width - 2. This prevents the apple from ever appearing right next

to the wall.

move-apple erases the current apple (using draw-white) then creates a

new pair of x/y coordinates for the apple using random-position twice.

Finally, it calls set-apple-position to move the apple to the new

coordinates.

grow-snake simply adds one to the length variable.

check-apple compares the x/y coordinates of the apple and the snake

head to see if they’re the same (using = twice and and to combine the

two booleans). If the coordinates are the same, we call move-apple to

move the apple to a new position and grow-snake to make the snake 1

segment longer.

Collision Detection

Next we see if the snake has collided with the walls or itself.

: check-collision (-- flag)

 \ get current x/y position

 snake-x-head @ snake-y-head @

 \ get color at current position

 convert-x-y graphics + @

 \ leave boolean flag on stack

 0 = ;

check-collision checks to see if the new snake head position is

already black (this word is called after updating the snake’s position but

38

before drawing it at the new position). We leave a boolean on the stack

to say whether a collision has occured or not.

Drawing the Snake and Apple

The next two words are responsible for drawing the snake and apple.

: draw-snake

 length @ 0 do

 i snake-x @ i snake-y @ draw-black

 loop

 length @ snake-x @

 length @ snake-y @

 draw-white ;

: draw-apple

 apple-x @ apple-y @ draw-black ;

draw-snake loops through each cell in the snake arrays, drawing a black

pixel for each one. After that it draws a white pixel at an offset of

length. The last part of the tail is at length - 1 into the array so

length holds the previous last tail segment.

draw-apple simply draws a black pixel at the apple’s current location.

The Game Loop

The game loop constantly loops until a collision occurs, calling each of

the words defined above in turn.

: game-loop (--)

 begin

 draw-snake

 draw-apple

 100 sleep

 check-input

 move-snake-tail

 move-snake-head

 check-apple

 check-collision

 until

 ." Game Over" ;

39

: start initialize game-loop ;

The begin/until loop uses the boolean returned by check-collision

to see whether to continue looping or to exit the loop. When the loop is

exited the string "Game Over" is printed. We use 100 sleep to pause

for 100 ms every iteration, making the game run at rougly 10 fps.

start just calls initialize to reset everything, then kicks off game-

loop. Because all the initialization happens in the initialize word,

you can call start again after game over.

And that’s it! Hopefully all the code in the game made sense. If not, you

can try running individual words to see their effect on the stack and/or

on the variables.

The End

Forth is actually much more powerful than what I’ve taught here (and

what I implemented in my interpreter). A true Forth system allows you

to modify how the compiler works and create new defining words,

allowing you to completely customize your environment and create your

own languages within Forth.

A great resource for learning the full power of Forth is the short book

“Starting Forth” by Leo Brodie. It’s available for free online and teaches

you all the fun stuff I left out. It also has a good set of exercises for you

to test out your knowledge. You’ll need to download a copy of

SwiftForth to run the code though.

http://www.forth.com/starting-forth/
http://www.forth.com/swiftforth/dl.html

40

Easy Forth Words - sort by page where found

first

No Page Word Explanation

1 2 +

 Add the two top stack items – leave
result on stack

2 3 *

3 3 : Start a new word : NEW xx yy zz ;

4 4 ; End the new word definition with a ;

5 4 dup

6 5 drop

7 5 swap

8 5 over

9 6 rot

10 6 .

11 6 emit

12 7 cr

13 7 ." ____"

14 8
Booleans -

Flag

15 8 =

16 8 <

17 8 >

18 9 and

19 9 or

20 9 invert

21 9 if

22 10 else

23 9 then

24 10 do

25 10 loop

26 12 variable

27 13 constant

28 14 cells

41

29 14 allot

30 14 !

31 14 ?

32 15 key

33 15 begin

34 15 until

35 19 sleep

101 19 convert_x_y

102 19 draw_white x,y

103 19 draw_black x,y

Add other words that are not really explained :

 () >R R>

42

Easy Forth Words - sort alphabetically

No Page Word Explanation

30 14 !

02 3 *

10 6 .

13 7 ." ____"

03 3 :

04 4 ;

31 14 ?

01 2 +

16 8 <

15 8 =

17 8 >

29 14 allot

18 9 and

33 15 begin

14 8
Booleans -

Flag

28 14 cells

27 13 constant

12 7 cr

24 10 do

06 5 drop

05 4 dup

22 10 else

11 6 emit

21 9 if

20 9 invert

32 15 key

25 10 loop

19 9 or

08 5 over

43

09 6 rot

35 19 sleep

07 5 swap

23 9 then

34 15 until

26 12 variable

101 19 convert_x_y

102 19
draw_white

x,y

103 19
draw_black

x,y

44

Snake Game 24 x 24 play area

 0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

Notes:

Easy Forth v16_A5_withexp_comments

