
\ Write a simple Application using 35 Forth Words - set IO bits and start a counter -- ExMark - Juergen Pintaske Sept2016
\ There is a Word for SOS as well, but dependent on the hardware you can hear the SOS as some sounds (or not) just try
\ UMMT Demo running on the PC. Set up a folder c:\UMMT. Store this file UMMTDEMO.f into this folder
\ INCLUDE c:\UMMTDEMO\UMMT3.f - copy this into the VFX window, and hit <cr> to run the demo, .
\ A few lines "GUI" will be shown. Type in PWL <cr>, changes 1 to 0, or other bits, sos <cr>, counter <cr> and ???? <cr>

\ Copy file into VFX, see how VFX compiles to learn new words; when finished, type <cr> and then type COUNTER or 400 SCOUNTER
\ BIN_HEX 0000-0 0001-1 0010-2 0011-3 0100-4 0101-5 0110-6 0111-7 1000-8 1001-9 1010-A 1011-B 1100-C 1101-D 1110-E 1111-F
\ Desription: This is an implementation of the MicroBox, which consists of a Micro, PWM LED, 3 Switches, 4 OUT LEDs, 4 IN LEDs
\ Here implements some functionality in SW: no chip, no LEDs, no resistors, no PCB, no soldering, execute the same - PC only

\ The “GUI”, the Graphic User Interface is implemented using two very simple words - Page to clear screen, ." type text lines
\ MMT7 shows the funtions represented, and below MMT7 the 1bit PWM, 3bits SWITCHES, 4bits OUT, 4bits IN, 4bits ANI - 16 bits
\ Further down find MBV2, it prints the 16 Bits underneath this text. All lines are resent whenever the 16 bits are updated.
\ MMT4 and MMT5 show the words that control the single bits or nibbles. PWF = flashing, ??? and ???? for DEBUG, more tbd.
\ This has been intentionally written just using simple words and constructs, so anybody can use it as startig point.
\ And as with all Forth programs, this application can be easily modified and extended - and all interactively.

HEX \ from now on all of the numbers are hexadecimal. MMT lines print a display window GUI, very basic, just uses Page and CR
: MMT0 ." \ copy INCLUDE c:\UMMTDEMO\UMMT3.f into VFX, hit <cr> ExMark Juergen Pintaske 16_09" CR ; \
: MMT1 ." PSWI OUT IN ANI - R0 R1 - Stack contents " CR ; \ description of ??? display
: MMT2 ." psss oooo iiii aaaa rrrr rrrr " CR ; \ Variables - RSTACK - DSTACK
\ : MMT2a ." 0000 0 0001 1 0011 2 0011 3 0100 4 0101 5 0110 6 0111 7 1000 8 1001 9 1010 A 1011 B 1100 C 1101 D 1110 E 1111 F" ;
: MMT2b ." PWHL S3HL S2HL S1HL O3HL O2HL O1HL O0HL I3HL I2HL I1HL I0HL A3Hl A2HL A1HL A0HL h/l ????" CR ; \ ???? DEBUG
: MMT3 ." \ PWM T3 T2 T1 O3 O2 O1 O0 I3 I2 I1 I0 A3 A2 A1 A0 " CR ;
: MMT4 ." \ PWH T3H T2H T1H O3H O2H O1H O0H I3H I2H I1H I0H A3H A2H A1H A0H Commands A \" CR ; \ taken out?
: MMT5 ." \ PWL T3L T2L T1L O3L O2L O1L O0L I3L I2L I1L I0L A3L A2L A1L A0L Commands B \" CR ; \ taken out?
: MMT6 ." \ PWF ??? tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd Commands C \" CR ; \ taken out?
: MMT7 ." X s s s o o o o i i i i a a a a " CR ; \ display after START?

: MicroBox PAGE MMT0 (MMT1) (MMT2) (MMT2b) (MMT3) (MMT4) (MMT5) (MMT6) MMT7 CR ; \ display some lines, others not

Variable PWM (0 or 1) \ not used for now
Variable SWI (Switches SW3 SW2 SW1 0 0 0) \ not used for now
Variable PSWI (Combined PWM and Switches X s s s) \ combines the bit for PWM and the 3 bits for the 3 switches
Variable OUTP (OUTP 3 2 1 0)(same as Bit 7 6 5 4) \ the 4 “OUTPUT LEDs” of the MicroBox
Variable IN (IN 3 2 1 0 (3 2 1 0 of the 8 Bits) \ Inputs that can be set e.g. for AND OR XOR INVERT
Variable ANI (Simulated analog input 0 to F) \ either simulated external ANALOG - or free for anything
Variable HOU (OUT as hexadecimal number 0 to F) \ to be implemented, just showing the 4 OUT bits in hexadecimal
Variable ALL (PWM SWI OUT INP ANI) \ To be done, combining it all into a 16 bit Variable

: disbit4 DUP $8 AND IF ." 1" ELSE ." 0" THEN ; \ display a bit, here the topmost of the 4
: ds Disbit4 1 LSHIFT ; \ display a bit and shift the 4 bit left by one
: dssp ds Space Space space space ; \ combine to a block using spaces per bit
: 4dssp dssp dssp dssp disbit4 drop ; \ and the 4 bits of a nibble
: DV 3 spaces PSWI @ 4dssp 4 spaces OUTP @ 4dssp 4 spaces IN @ 4dssp 4 spaces ANI @ 4dssp ; \ display the 16 bits
: SPACES (u --) 0 ?DO SPACE LOOP ; \ define SPACES, often included in the wordset already

: MBV2 PAGE MMT0 (MMT1) (MMT2) MMT2b (MMT3) (MMT4) (MMT5) (MMT6) MMT7 DV CR ; \ MBV2 updates the “SCREEN”

: COUNTER Begin outp @ 1+ outp ! 300 ms mbv2 key? until ; \ run counter program, see the OUT bits change, just type counter <cr>
: SCOUNTER Begin dup outp @ 1+ outp ! ms mbv2 key? until ; \ programmable speed, for example 400 scounter cr
: SOS 07 emit 100 ms 07 emit 100 ms 07 emit 600 ms 07 emit 300 ms 07 emit 300 ms 07 emit 600 ms 07 emit 100 ms 07 emit 100 ms 07 emit ;

: ??? PSWI @ . OUTP @ . IN @ . ANI @ . base @ >r hex .S r> base ! ; \ Small Debugger - prints 4 variables + Data Stack contents
 \ to be modified to a compromise ???? to replace .S, so all data printed out as one line
: ???? 3 spaces PSWI @ . OUTP @ . IN @ . ANI @ . 4 spaces >R >R >R >R >R >R >R >R R> DUP . R> DUP . R> DUP . R> DUP . R> DUP . R> DUP . R> DUP . R>
DUP . ;

\ Preset Variables:
0 PWM ! \ not used for now
0 SWI ! \ not used for now
9 PSWI ! \ Set this combined variable to 9 = 1001 this will show the PWM LED ON and SW1 ON
0 OUTP ! \ All bits LOW 0000
3 IN ! \ The IN variable set to 3 0011 - prepared to try AND OR XOR INVERT
F ANI ! \ Set to F but not used for now
F HOU ! \ not used for now
FFFF ALL ! \ ALL will be the combined 16 Bit Vector PWSI OUT IN ANI later , was commented out here for now

\ Control Words (from left to right as shown in MMT3 and MMT4)
: PWH PSWI @ $8 OR PSWI ! MBV2 ; \ Get the variable onto stack, set bit 3, and store it back, now update the Display
: T3H PSWI @ $4 OR PSWI ! MBV2 ; \ Get the variable onto stack, set bit 2, and store it back, see above
: T2H PSWI @ $2 OR PSWI ! MBV2 ; \ And the same for setting all of the other bits
: T1H PSWI @ $1 OR PSWI ! MBV2 ;
: O3H OUTP @ $8 OR OUTP ! MBV2 ; \ x x x x 1 0 0 0
: O2H OUTP @ $4 OR OUTP ! MBV2 ; \ 0 1 0 0
: O1H OUTP @ $2 OR OUTP ! MBV2 ; \ 0 0 1 0
: O0H OUTP @ $1 OR OUTP ! MBV2 ; \ 0 0 0 1
: I3H IN @ $8 OR IN ! MBV2 ;
: I2H IN @ $4 OR IN ! MBV2 ;
: I1H IN @ $2 OR IN ! MBV2 ;
: I0H IN @ $1 OR IN ! MBV2 ;
: A3H ANI @ $8 OR ANI ! MBV2 ;
: A2H ANI @ $4 OR ANI ! MBV2 ;
: A1H ANI @ $2 OR ANI ! MBV2 ;
: A0H ANI @ $1 OR ANI ! MBV2 ; \ here end the words that Set Bits HIGH - the next ones set the same bits LOW
: PWL PSWI @ $7 AND PSWI ! MBV2 ; \ x x x x 0 1 1 1
: T3L PSWI @ $B AND PSWI ! MBV2 ; \ 1 0 1 1
: T2L PSWI @ $D AND PSWI ! MBV2 ; \ 1 1 0 1
: T1L PSWI @ $E AND PSWI ! MBV2 ; \ 1 1 1 0
: O3L OUTP @ $7 AND OUTP ! MBV2 ;
: O2L OUTP @ $B AND OUTP ! MBV2 ;
: O1L OUTP @ $D AND OUTP ! MBV2 ;
: O0L OUTP @ $E AND OUTP ! MBV2 ;
: I3L IN @ $7 AND IN ! MBV2 ;
: I2L IN @ $B AND IN ! MBV2 ;
: I1L IN @ $D AND IN ! MBV2 ;
: I0L IN @ $E AND IN ! MBV2 ;
: A3L ANI @ $7 AND ANI ! MBV2 ;
: A2L ANI @ $B AND ANI ! MBV2 ;
: A1L ANI @ $D AND ANI ! MBV2 ;
: A0L ANI @ $E AND ANI ! MBV2 ;

\ Set I1 and/or I0 of the INPUTs, then call AND01, OR01, XOR01, INVERT0 and see the result of the logic result in O0
: AND01 IN @ DUP 1 RSHIFT AND 01 AND OUTP ! MBV2 ; \ Do an AND of IN bit0 and bit1, 00=>1 01=>0 10=>0 11=>1
: OR01 IN @ DUP 1 RSHIFT OR 01 AND OUTP ! MBV2 ; \ Do an OR of IN bit0 and bit1, 00=>0 01=>1 10=>1 11=>1
: XOR01 IN @ DUP 1 RSHIFT XOR 01 AND OUTP ! MBV2 ; \ Do an XOR of IN bit0 and bit1, 00=>0 01=>1 10=>1 11=>0
: INVERT0 IN @ INVERT 01 AND OUTP ! MBV2 ; \ Do an INV of IN bit0, 0=>1 1=>0

\ Forth Words used - remember: Any Forth Word consists of a character sequence plus a space (not allowed in Words are CR, BS, Space)
\ 0 INCLUDE INCLUDE will load and start a file in VFX; set up c:\ummtdemo, store file there and type INCLUDE c:\UMMTDEMO\UMMTDEMO.f
\ 1 HEX Mostly VFX recognizes numbers as decimal or HEX. If in DECIMAL mode any Hex Number will give an error. Careful!
\ 2 \ \ and a Space after it tells Forth that the rest of the line is for documentation, so is ignored by VFX.
\ 3 : : starts the definition of a new WORD, the definition is terminated by ; see 6 : Bell 07 EMIT ; sends a sound.
\ 4 ." .” SPACE starts a string of characters to be sent to the screen, is terminated by "
\ 5 CR CR send a Carriage Return to the screen
\ 6 ; ; ends the definition started by :
\ 7 MicroBox MicroBox is the name of a new word defined
\ 8 Variable Variables are memory locations with a name. VARIABLE xx to define, nn xx ! to preset, xx @ . print
\ 9 DUP DUP takes the value on top of the stack and put the same value on top as NEW tOS - Top of Stack
\ 10 $n $n the $ ensures that VFX takes the number following as hexadecimal number
\ 11 AND AND is a logical operator. works on the two top numbers on the stack, on a bitwise basis, only leaves result
\ 12 IF IF not zero do A ELSE do B THEN continue
\ 13 ELSE
\ 14 THEN
\ 15 LSHIFT LSHIFT does a bitwise shift of the value on stack, expects the number of shifts to be done on stack - 1 LSHIFT
\ 16 SPACE SPACE sends a space to the screen
\ 17 DROP DROP does the opposite to DUP; DROP takes the TOS and deletes what was there, all values move up one position
\ 18 DV DV is a word that will send the combined variables to the screen 16 Bit wide. A DVG could send a general 16 bit
\ 19 @ @ stands for AT, for example with Variables - xx puts the address of xx onto the stack, xx @ replaces with value
\ 20 ?DO ?DO will start a DO word word LOOP, expects the number of loops on stack. ?DO checks if number on stack is 0.
\ 21 LOOP
\ 22 PAGE PAGE clears the screen, takes the cursor to the top left position and prints ok
\ 23 BEGIN BEGIN starts a loop of words which ends with UNTIL. Until expects a flag on stack; returns to BEGIN or continues
\ 24 1+ 1+ is put on stack, adds one to the number below and replaces it. Same function as 1 + as 2 words.
\ 25 ! ! is the opposite function to @, and stores a number on stack at a location on stack, e.g. 55 xx ! at Variable
\ 26 MS MS stands for 1 Millisecond delay in software. Careful which base you are in - 256 and 100 the same Dec / HEX
\ 27 KEY? Key? Checks, if a key has been pushed as this generates a flag. BEGIN xxxxxxxx KEY? UNTIL - flag stops the loop
\ 28 UNTIL UNTIL end the BEGIN … UNTIL loop, exit if flag true.
\ 29 EMIT (07 for Bell) to get audible output from the PC - (:) BELL 07 BEL (;)sends the bell signal to the speaker
\ 30 .S .S is a non-destructive display of the stack, and all of the items
\ 31 . . is similar, prints out the top item only and as well consumes it; an easy way to get rid of the top stack item
\ 32 >R >R takes an item from DSTACK and moves to the RSTACK;
\ 33 R> R> does the opposite: take item from RSTACK move it to the DSTACK
\ 34 CR CR defines a word that goes to the beginning of the next line
\ ------ it seems this covers all of the words used in this little application
\
\ We know this application is not programmed optimally - but this was not the target - beginner's code for beginners
\ Links to further information: see word and PDF version of this
\
sos \ send SOS and then

counter \ start COUNTER
\ Programming Code again, but with spae included for handwritten comments and explanations

: Name .” Hello my name is Duncan “ ;

: disbit4 DUP $8 AND IF ." 1" ELSE ." 0" THEN ; \ display a bit, here the topmost of the 4

: ds Disbit4 1 LSHIFT ; \ display a bit and shift the 4 bit left by one

: dssp ds Space Space space space ; \ combine to a block using spaces per bit

: 4dssp dssp dssp dssp disbit4 drop ; \ and the 4 bits of a nibble

: DV 3 spaces PSWI @ 4dssp 4 spaces OUTP @ 4dssp 4 spaces IN @ 4dssp 4 spaces ANI @ 4dssp ; \ display the 16 bits

: SPACES (u --) 0 ?DO SPACE LOOP ; \ define SPACES, often included in the wordset already

: MBV2 PAGE MMT0 (MMT1) (MMT2) MMT2b (MMT3) (MMT4) (MMT5) (MMT6) MMT7 DV CR ; \ MBV2 updates the “SCREEN”

: COUNTER Begin outp @ 1+ outp ! 300 ms mbv2 key? until ; \ run counter program, see the OUT bits change, just type counter <cr>

: SCOUNTER Begin dup outp @ 1+ outp ! ms mbv2 key? until ; \ programmable speed, for example 400 scounter <cr>

: SOS 07 emit 100 ms 07 emit 100 ms 07 emit 600 ms 07 emit 300 ms 07 emit 300 ms 07 emit 600 ms 07 emit 100 ms 07 emit 100 ms 07 emit ;

: Bell 07 emit ;

