
Forth im FPGA
100 Mhz Forth-Maschine

Ulrich Hoffmann <uho@forth-ev.de>

J1-Softcore

• James Bowman euroForth 2010

• 16 Bit Forth CPU im Geiste vom Novix NC4000

• viele Forth-Befehle als Maschineninstruktionen

• Auch @ und ! sind
	
 1-Zyklus-Befehle (dual-ported RAM).

• Verilog < 200 Zeilen

J1-Aufbau

J1-Instruktionssatz
field width action
T ′ 4 ALU op, replaces T , see table II

T → N 1 copy T to N
R → PC 1 copy R to the PC
T → R 1 copy T to R
dstack ± 2 signed increment data stack
rstack ± 2 signed increment return stack
N → [T] 1 RAM write

Table III shows how these fields may be used together
to implement several Forth primitive words. Hence each of
these words map to a single cycle instruction. In fact J1
executes all of the frequent Forth words - as measured by
[6] and [7] - in a single clock cycle.
As in the Novix and SC32 [8] architectures, consecutive

ALU instructions that use different functional units can be
merged into a single instruction. In the J1 this is done by the
assembler. Most importantly, the ; instruction can be merged
with a preceding ALU operation. This trivial optimization,
together with the rewriting of the last call in a word as a
jump, means that the ; (or exit) instruction is free in almost
all cases, and reduces our measured code size by about 7%,
which is in line with the static instruction frequency analysis
in [7].
The CPU’s architecture encourages highly-factored code:

• the call instruction is always single-cycle
• ; and exit are usually free
• the return stack is 32 elements deep

B. Hardware Implementation

Execution speed is a primary goal of the J1, so particular
attention needs to be paid to the critical timing path. This
is the path from RAM read, via instruction fetch to the
computation of the new value of T . Because the ALU
operations (table II) do not depend on any fields in the
instruction, the computation of these values can be done in
parallel with instruction fetch and decode, figure 1.
The data stack D and return stack R are implemented

as small register files; they are not resident in RAM. This
conserves RAM bandwidth, allowing @ and ! to operate in
a single cycle. However, this complicates implementation of
pick and roll.
Our FPGA vendor’s embedded SRAM is dual-ported. The

core issues an instruction read every cycle (port a) and a
memory read from T almost every cycle (port b), using the
latter only in the event of an @ instruction. In case of a
memory write, however, port b does the memory write in the
following cycle. Because of this, @ and ! are single cycle
operations1.
In its current application - an embedded Ethernet camera -

the core interfaces with an Aptina imager and an open source
Ethernet MAC using memory mapped I/O registers. These
registers appear as memory locations in the $4000-$7FFF
range so that their addresses can be loaded in a single literal
instruction.

1the assembler inserts a drop after ! to remove the second stack
parameter

0123456789101112131415

1 value

)

literal

0123456789101112131415

0 0 0 target

)

jump

0123456789101112131415

0 0 1 target

)

conditional jump

0123456789101112131415

0 1 0 target

)

call

0123456789101112131415

0 1 1

R
→

P
C

T ′

T
→

N

T
→

R

N
→

[T
]

rs
ta
ck

±

d
st
ac
k
±

)

ALU

TABLE I: Instruction encoding

code operation
0 T

1 N

2 T + N

3 TandN

4 TorN

5 TxorN

6 ∼ T

7 N = T

8 N < T

9 NrshiftT

10 T − 1
11 R

12 [T]
13 NlshiftT

14 depth
15 Nu<T

TABLE II: ALU operation codes

word T
′

T
→

N

R
→

P
C

T
→

R

ds
ta
ck

±

rs
ta
ck

±

N
→

[T
]

dup T • +1 0
over N • +1 0

invert ∼ T 0 0
+ T + N -1 0

swap N • 0 0
nip T -1 0
drop N -1 0
; T • 0 -1
>r N • -1 +1
r> R • • +1 -1
r@ R • • +1 0
@ [T] 0 0
! N -1 0 •

TABLE III: Encoding of some Forth words.

J1-ALU-Operationen

field width action
T ′ 4 ALU op, replaces T , see table II

T → N 1 copy T to N
R → PC 1 copy R to the PC
T → R 1 copy T to R
dstack ± 2 signed increment data stack
rstack ± 2 signed increment return stack
N → [T] 1 RAM write

Table III shows how these fields may be used together
to implement several Forth primitive words. Hence each of
these words map to a single cycle instruction. In fact J1
executes all of the frequent Forth words - as measured by
[6] and [7] - in a single clock cycle.
As in the Novix and SC32 [8] architectures, consecutive

ALU instructions that use different functional units can be
merged into a single instruction. In the J1 this is done by the
assembler. Most importantly, the ; instruction can be merged
with a preceding ALU operation. This trivial optimization,
together with the rewriting of the last call in a word as a
jump, means that the ; (or exit) instruction is free in almost
all cases, and reduces our measured code size by about 7%,
which is in line with the static instruction frequency analysis
in [7].
The CPU’s architecture encourages highly-factored code:

• the call instruction is always single-cycle
• ; and exit are usually free
• the return stack is 32 elements deep

B. Hardware Implementation

Execution speed is a primary goal of the J1, so particular
attention needs to be paid to the critical timing path. This
is the path from RAM read, via instruction fetch to the
computation of the new value of T . Because the ALU
operations (table II) do not depend on any fields in the
instruction, the computation of these values can be done in
parallel with instruction fetch and decode, figure 1.
The data stack D and return stack R are implemented

as small register files; they are not resident in RAM. This
conserves RAM bandwidth, allowing @ and ! to operate in
a single cycle. However, this complicates implementation of
pick and roll.
Our FPGA vendor’s embedded SRAM is dual-ported. The

core issues an instruction read every cycle (port a) and a
memory read from T almost every cycle (port b), using the
latter only in the event of an @ instruction. In case of a
memory write, however, port b does the memory write in the
following cycle. Because of this, @ and ! are single cycle
operations1.
In its current application - an embedded Ethernet camera -

the core interfaces with an Aptina imager and an open source
Ethernet MAC using memory mapped I/O registers. These
registers appear as memory locations in the $4000-$7FFF
range so that their addresses can be loaded in a single literal
instruction.

1the assembler inserts a drop after ! to remove the second stack
parameter

0123456789101112131415

1 value

)

literal

0123456789101112131415

0 0 0 target

)

jump

0123456789101112131415

0 0 1 target

)

conditional jump

0123456789101112131415

0 1 0 target

)

call

0123456789101112131415

0 1 1

R
→

P
C

T ′

T
→

N

T
→

R

N
→

[T
]

rs
ta
ck

±

ds
ta
ck

±

)

ALU

TABLE I: Instruction encoding

code operation
0 T

1 N

2 T + N

3 TandN

4 TorN

5 TxorN

6 ∼ T

7 N = T

8 N < T

9 NrshiftT

10 T − 1
11 R

12 [T]
13 NlshiftT

14 depth
15 Nu<T

TABLE II: ALU operation codes

word T
′

T
→

N

R
→

P
C

T
→

R

ds
ta
ck

±

rs
ta
ck

±

N
→

[T
]

dup T • +1 0
over N • +1 0

invert ∼ T 0 0
+ T + N -1 0

swap N • 0 0
nip T -1 0
drop N -1 0
; T • 0 -1
>r N • -1 +1
r> R • • +1 -1
r@ R • • +1 0
@ [T] 0 0
! N -1 0 •

TABLE III: Encoding of some Forth words.

Gameduino
• James Bowman's
	
 	
 Arduino-Shield für Retro-Gaming

• Xilinx-Spartan 3 FPGA

• VGA (400x300 pixels in 512 colors), Sound

• Gameduino Library

• J1-Softcore

• aus Library ansprechbar

• Open Source

j1eForth
• GitHub-Projekt j1eForth versucht ein

eForth auf dem J1 zu realisieren

• nur für einen J1-Simulator

• Portierung auf Papilio-Pro FPGA
beigesteuert

• Xilinx-Spartan 6

• 66Mhz

• Open Source

Portierung auf LOGI PI-FPGA
• LOGI PI-Aufsteck-Board für Raspberry Pi

• Xilinx Spartan 6

• 100Mhz

• Open Source

cmForth
• Chuck Moore's Forth für den NC4000

• 30 Screens

• Compiler, Interpreter

• optimierendes Compiler

• UART

• Massenspeicher

• MetaCompiler (extrem einfach)

• Ein Juwel:
	
 Mikrokosmos von Hard und Software
	
 Selbstreproduzierendes System

Ziel: cmForth für J1
• Portierung von cmForth auf J1

• Keine Änderung am J1

• so wenig Änderungen an cmForth wie nötig

• UART in Hardware

• Anderer Maschinencode

• In Arbeit

Demo

Ausblick

• cmForth auf J1

• Modifikationen

• Architektur-Experimente

• FPGAs haben 18-Bit-RAM → 18 Bit CPU?

Diskussion

