
A guide for programming the
SEAforth® family of processors

Elizabeth D. Rather
and the Technical Staff of IntellaSys®

VentureForth
®

Program
m
ers G

uide

Copyright Notice

This document provides information on IntellaSys products. No license, expressed or implied, by estoppel or
otherwise, to any intellectual property is granted by this document. Except as provided in IntellaSys’s Terms
and Conditions of Sale for such products, IntellaSys assumes no liability whatsoever.

Printed in the United States of America. All Rights Reserved.

Copyright (©) Technology Properties Limited (TPL) 2008. IntellaSys is a TPL Group Enterprise. Printed in the
United States of America. All Rights Reserved.

Trademarks

The following items are registered trademarks of Technology Properties Limited (TPL): IntellaSys, IntellaSys
logo, inventive to the core, SEAforth, Scalable Embedded Array, VentureForth, Forthlets, SEAtools, and
FORTHdrive. All other trademarks and registered trademarks are the property of their respective owners.

Disclaimer

IntellaSys disclaims any express or implied warranty relating to sale and/or use of IntellaSys products,
including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement
of any patent, copyright, or other intellectual property right.

IntellaSys may make changes to specifications and product descriptions contained in this document at any
time without notice. Contact your local IntellaSys Sales Office or go to www.intellasys.net to obtain the latest
specifications before placing your purchase order.

Current revision: 9/3/2008

This document contains information proprietary to IntellaSys, Inc. Any reproduction, disclosure, or unau-
thorized use of this document, either in whole or in part, is expressly forbidden without prior permission in
writing from:

IntellaSys
20400 Stevens Creek Blvd, Fifth Floor
Cupertino CA 95014 USA
408.850.3270 voice
408.850.3280 fax
http://www.IntellaSys.net

http://www.intellasys.net

VentureForth Programmer’s Guide

Table of Contents 3

Table of Contents

Chapter 1 Introduction to SEAforth Programming . 7

1.1 Welcome .7
1.2 Definitions and Notational Conventions .8
1.3 Development Environment .11

Chapter 2 Using VentureForth 13

2.1 Source Management. .13
2.1.1 Setting Up a Project File .14
2.1.2 Loading Application Files .15
2.1.3 Launching a VentureForth Application .16
2.2 Compiling Code for a SEAforth Node. .16
2.3 Downloading Your Program To The Array. .19
2.3.1 Streams .19
2.3.2 Stream Delivery .20
2.4 Using the VentureForth Simulator. .20

Chapter 3 VentureForth Commands 25

3.1 Primitive Commands. .25
3.1.1 Stack Operations .25
3.1.2 Register Operations .26
3.1.3 Addressing Operations .27
3.1.4 Logical Operations. .29
3.1.5 Arithmetic Operations .29
3.1.6 Extended Mode Arithmetic (S40C18 only) .30
3.2 Definitions, Calls and Returns .31
3.3 Program Structures .34
3.3.1 A Simple Branch .35
3.3.2 Conditionals. .35
3.3.3 Indefinite loops .37
3.3.4 Finite loops .39
3.3.5 Infinite loops .41
3.4 Compiler Directives. .41
3.4.1 Comments .42
3.4.2 Address Management. .42
3.4.3 Node Initialization .43
3.4.4 Slot Management .43
3.4.5 Conditional Compilation. .44
3.4.6 Programming Tools .45

VentureForth Programmer’s Guide

4 Table of Contents

Chapter 4 Inter‐node Communication 49

4.1 Basic Node Geography. 49
4.2 Port Execution . 51
4.3 Building Program Loading Streams. 52
4.3.1 Definition of Terms . 53
4.3.2 Starting the Stream . 54
4.3.3 Nesting . 55
4.3.4 The Domino Awakening . 56
4.3.5 Summary of Steps . 57
4.3.6 Domino Awakening Example . 58
4.4 Boot Examples . 59
4.4.1 An Asynchronous Serial Stream . 60
4.4.2 A Synchronous Serial Stream . 61
4.4.3 A Flash Memory Stream Using SPI . 62
4.4.4 Summary of Stream Loader Commands . 62

Appendix A S24 ROM and Library Functions 65

A.1 S24 Overview . 65
A.2 Arithmetic Functions . 66
A.2.1 Multiply and MAC . 66
A.2.2 Alternative Entry Points on Synchronous Serial Nodes 67
A.3 SPI I/O Support . 67
A.4 S24 Asynchronous I/O . 71
A.5 S24 Synchronous I/O . 72

Appendix B S40C18 ROM and Library Functions . . 75

B.1 Arithmetic Functions . 75
B.1.1 Arithmetic. 75
B.1.2 Mathematics Library . 77
B.2 General I/O Functions . 79
B.3 SPI I/O Support . 81
B.4 S40C18 Asynchronous I/O . 85
B.5 S40C18 Synchronous I/O . 86

Appendix C List of Commands. 89

Index . 95

VentureForth Programmer’s Guide

Table of Contents 5

List of Figures

1.1 VentureForth programming environment ..12
2.1 Sample application loaded in VentureForth under Windows.............16
2.2 Information presented for each node in the simulator21
2.3 Detailed node information produced by the watch<n> words...........22
3.1 Diagram of an if ... else ... then structure..............................36
3.2 Diagram of a begin ... while ... repeat structure....................37
3.3 Diagram of a for ... next structure..38
3.4 Diagram of a meanwhile ... then ... until structure................38
3.5 Diagram of a for ... next structure..40
3.6 Result of compiling the code in Listing 3.3..46
4.1 Block diagram of S40C18, showing I/O and direction ports................49
4.2 Direction bits ...50
A.1 Map of S24 nodes, showing I/O capabilities65
B.2 Map of S40C18 nodes, showing I/O facilities......................................79

List of Tables

1.1. Data type notation ..10
4.1. Direction port selection constants ..50
4.2. Commands to enter “sleep” mode..51
A.1. Constants used to specify wave form inputs68
B.2. Constants used to specify wave form inputs82
C.3. Host commands described in this book ..89
C.4. Target commands described in this book ...91

Code Listings

2.1. Windows portion of the blinktest project file14
2.2. Linux portion of the blinktest project file..14
2.3. blinktest Sample application listing...17
2.4. Example of a program to blink an LED ..18
2.5. Example of simulator initialization..21
3.1. Example of co‐routines ...34
3.2. Use of conditional compilation for block comments44
3.3. Example of consecutive literals...45
4.1. Example of the setup for a domino awakening...................................58

VentureForth Programmer’s Guide

6 Table of Contents

4.2. Example of a stream (for an S40C18) ... 59
4.3. Example of an asynchronous boot stream ... 60
4.4. Example of a synchronous boot stream ... 61
4.5. Example of an SPI/flash memory stream.. 62

7

Chapter 1 Introduction to SEAforth Programming

1.1 Welcome

Send feedback You are about to embark on a new adventure. The SEAforth family of
multicore processors represents an entirely new technology. It is so new,
in fact, that those of you who are designing SEAforth into new devices
are, yourselves, pioneers, along with those of us at IntellaSys who are
bringing this new technology into being.

The wonderful thing about pioneering new technology is that you have
an opportunity to open new product opportunities and take a giant leap
forward in your market. The downside is that, like all pioneers, you will
not find open roads and smooth, well-marked paths.

The lack of “well-marked paths” is most visible in the arena of
programming tools. While it is theoretically possible to run conventional,
high-level languages on the SEAforth platform, such an approach forces
a return to sequential threaded thinking, inefficient generated code, and
the attachment of large external program memory arrays. This negates
many of the unique advantages of this parallel computing platform.

From the perspective of common, sequential thinking, performance of
the SEAforth chip might actually look quite unfavorable compared to
other platforms, simply because most current hardware architectures
offer advanced, complicated memory access features to help overcome
shortcomings of inherently sequential tasking.

By treating SEAforth architecture in familiar and common ways, one
would miss the ways in which it is actually a much more powerful
concept. It is important to stop thinking of the SEAforth platform as a
“nail” simply because hammers have been such familiar, beloved and
even fancy tools for so long a time.

True leaps forward in processor performance require a fresh new
thinking as well as the willingness to let go of familiar approaches and
views. Only then will SEAforth architecture unleash its full power and

mailto:feedback@intellasys.net?Subject=VFRM%20Section%201.1

VentureForth Programmer’s Guide

8 Introduction to SEAforth Programming

become the “rocket in a world of tractors” that it can be. Even the
architects that built the SEAforth platform have only scratched the
surface of what designs are possible.

Having said all this, we are actively working on techniques to marry
sequential language elements with advanced parallel computing. The
simple reason for this is that a sequential, external program can hold the
deep state information and complex algorithms needed to implement
such applications as TCP/IP stacks or other complex protocols, language
compilers, event rich human interfaces or other complex application
areas.

This manual describes the current state of programming tools for the
SEAforth multicore processors. These tools are undergoing rapid
development, even as this is being written. Therefore, you may expect
relatively frequent updates as new software capabilities are developed,
and in response to feedback from you, our fellow pioneers.

1.2 Definitions and Notational Conventions

Send feedback Any new technology necessarily introduces some specialized terms, or
uses common words with specialized meanings. Since the SEAforth
chips are based in part on the Forth Programming Language, some of
these terms are shared with Forth. However, some Forth concepts and
words are used differently in connection with SEAforth technology. In
addition, this book uses some special notation to represent the
movement of data in the array of cores or nodes. This section describes
these things.

SEAforth elements

A SEAforth multicore array consists of some number of individual cores,
which share a common architecture and instruction set but differ
somewhat in their capability for I/O and communication depending
upon their position in the array. Individual cores are identified as
“nodes,” and numbered, with Node 00 being in the lower left corner of
the array and the highest-numbered node in the upper right corner.
There are also several “external nodes,” which exist only in the host
system for the purpose of constructing boot streams (as described in
Section and Section 4.3.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%201.2

VentureForth Programmer’s Guide

Introduction to SEAforth Programming 9

Language elements

The VentureForth compiler parses source using spaces (or “whitespace
characters”) to separate tokens. A token may be a defined command or a
number according to the current radix (decimal or hex); anything else
will generate an error message. Command names may contain any
combination of printable ASCII characters other than whitespace
characters. Examples of commands include dup, +, and @p+. Although
there is a fixed number of primitive commands in VentureForth, the
programming process consists of defining new commands in the
compiler, which compile target code and callable subroutines.

Stacks

A SEAforth core is fundamentally a stack machine. It features two stacks:
a data stack (whose primary use is passing data between words), and a
return stack (whose primary use is managing call nesting and returns).
The return stack is also used for auxiliary purposes, however. Since the
data stack is far more visible to the programmer than the return stack, in
this document it is usually referred to as just “the stack.”

Code listings

Code is displayed in this font. Lengthy sections of code are treated as
specialized figures, and referenced in the Table of Listings in the front of
this book.

Case sensitivity

VentureForth is case-insensitive. Common practice is to use lower-case.
In documentation, upper case is sometimes used to refer to machine
instructions as distinct from VentureForth commands.

Glossary entries

The commands described in this book are presented in “glossaries,”
including for each command whether it’s a compiler command
(designated by the letter “H” for host or a designation showing what
target parts include the command (in its character set or ROM). The
target designations include “A” for all target nodes, S24 for SEAforth S24
parts only, or S40 for SEAforth 40C18 parts only). The glossary entry also
shows the command’s stack effect (including the return stack effect,
when it is affected), pronunciation as needed (since many commands use
symbols), and a brief description of what it does.

VentureForth Programmer’s Guide

10 Introduction to SEAforth Programming

Stack effects

One of the essential requirements for using each instruction is to know
what, if anything, it expects on the data or return stacks, and what, if
anything, it leaves. Glossary entries for each command will show stack
effects in parentheses. Within the parentheses, there is a dash which
separates the stack before execution of the command from the stack after
it. The top two data stack items are in Registers T (top) and S (second);
the top return stack item is in Register R. The data stack’s commnets are
the default. If the return stack is effected by a word R: is used to denote it.

For example, consider push, which removes an item from the data stack
and pushes it onto the return stack. Its stack effect would be shown as:

(x — R:x)

Where several items are involved, they will be designated numerically.
For example, the stack effect of over (which copies the second stack item
to the top) would be:

(x1 x2 — x1 x2 x1)

Data types

The Forth language, on which the SEAforth architecture is based, is a
weakly-typed language. That is, although various kinds of data are
recognized (addresses, integer numbers, characters, etc.), Forth
compilers do not attempt to enforce type or overload operators. It is the
programmer’s responsibility to supply appropriate data to various
commands. Within this book, where the type of an item on the stack is
important, we will represent it by using the notation in Table 1.1.

Table 1.1 Data type notation

Data type Notation

Single cell, no particular type x

signed integer n

positive integer +n

unsigned integer u

18‐bit cell whose content is described in text w

double‐length integer (35 or 36 bits) d1 (msw) d2 (lsw)

address, unspecified size addr

18‐bit address a18

9‐bit address a9

VentureForth Programmer’s Guide

Introduction to SEAforth Programming 11

Numbers

Most numbers in this document are decimal. Hex numbers are indicated
by the prefix $. Thus:

• 10 equals decimal 10
• $10 equals decimal 16

Comments

Comments in code are of three forms:

• A left parenthesis (followed by at least one space and one or more
characters and terminated by a right parenthesis)

• A backslash \ followed by at least one space and one or more char-
acters, terminated by the end of the line on which the backslash
appears

• A multi-line block of comments is prefaced by 0 [if] and termi-
nated by [then] (conditional compilation directives, described in
Section 3.4.5, are used to skip over the comment text).

All comments are processed by the compiler only. They compile no code
for the target, and are used solely to help the programmer’s
understanding.

Send feedback

You may have noticed this message at the beginning of each section.
These are links that will generate an email message to the maintainers of
this book, who will be grateful for any comments you may have on that
section.

1.3 Development Environment

Send feedback The VentureForth programming toolset includes a PC connected in some
fashion to hardware supporting a SEAforth processor, as shown in
Figure 1.1. Evaluation boards are available from IntellaSys, which
support an S24 or S40C18 chip and a USB connection to the PC.
Equivalent custom hardware may also be used. Boot ROMs in SEAforth
nodes support program downloading using flash memory via an SPI
port or synchronous or asynchronous serial ports using mechanisms
described in Section 4.3.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%201.3

VentureForth Programmer’s Guide

12 Introduction to SEAforth Programming

The PC acts as a host for the
VentureForth compiler, simulator,
and other tools in support of a
SEAforth target. Versions of the
VentureForth development system
are available for Windows and
Linux.

Figure 1.1 VentureForth programming
environment

`

PC, Windows or Linux SEAforth
evaluation board

USB
Connection

VentureForth Programmer’s Guide

Using VentureForth 13

Chapter 2 Using VentureForth

This chapter describes the procedures needed for writing and testing
programs on the SEAforth family of multi-core processors.

The VentureForth toolset includes a compiler, simulator and debugging
package, together with utilities for downloading object programs into a
SEAforth core and testing them.

For details of the hardware-level of the chip itself, please refer to the Data
Sheet for the appropriate part.

2.1 Source Management

Send feedback The VentureForth SEAforth installer creates three directories:

• VentureForth is the highest-level directory. Within this directory are
three lower-level directories:

• docs contains documentation, including your license agreement,
readme, your Data Sheet, and this book.

• projects contains application folders, including sample applica-
tions.

• vf contains the VentureForth compiler and simulator source code,
as well as the sources for the pre-existing code in the ROM for the
particular chips you’re using. The sources for the ROM code are
used to generate a symbol table so that you can reference these rou-
tines. The ROM library routines for the S24 parts are documented in
Appendix A, while the ROM library routines for the S40C18 parts
are documented in Appendix B.

The projects directory contains a folder for each sample application. We
recommend that you create a new folder in the projects directory for
each new application, usually by copying an existing project folder to
use as a template.

Within a project folder, there will be files with three possible extensions:

• .f indicates a file that will be processed by the compiler, to add
compiler features such as macros.

• .vf indicates code that will run on the chip.
• .vfp indicates a project file that launches the application.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%202.1

VentureForth Programmer’s Guide

14 Using VentureForth

We will focus on a sample project called blinktest.

2.1.1 Setting Up a Project File

Send feedback Each project file shipped with VentureForth contain two sections: one
that launches an application under Linux, and one that launches the
same application under Windows. They do not conflict with one
another; each OS will ignore the parts that don’t apply. You may delete
the section you aren’t using, if you wish.

The easiest way to set up your own project file is simply to copy an
existing project directory, and give it the name of your project (e.g.
blinktest). Then you may customize it by following these steps:

1. Put the file or files for your application in the directory. This appli-
cation has a main file called blinktest.vf and other files that incor-
porate different sub-applications run by different nodes.

2. Edit the project.vfp file, using your regular programming editor.
The Windows portion of the project file for blinktest is shown in
Listing 2.1. The INCLUDE= statement identifies the main load file for
your application. This file should include all setup steps, define the
programs for all nodes, construct the load stream, and perform any
other desired steps such as setting up the simulator. If there are
other files, they should also be loaded by this file. The TITLE= state-
ment allows you to specify the text that will appear on the title bar
of the window when VentureForth is running this project.

Listing 2.1 Windows portion of the blinktest project file

The Linux portion consists of a brief shell script at the beginning of
this file. For blinktest, it looks like Listing 2.2. If you are using
Linux, you must edit this to reference your project.

Listing 2.2 Linux portion of the blinktest project file

[STARTUP]
INCLUDE=blinktest.vf
TITLE=Chip Test

#!/usr/bin/env vfl
.(Blink Test)
INCLUDE blinktest.vf
\\

mailto:feedback@intellasys.net?Subject=VFRM%20Section%202.1.1

VentureForth Programmer’s Guide

Using VentureForth 15

2.1.2 Loading Application Files

Send feedback Your project will be compiled by a master file, which is identified in its
project file. This file, in turn, may load additional files to complete your
application.

The first responsibility of the master file is to generate entry points for
whatever code is available in ROM for use by your application. This is
done by a command of the form:

v.VF +include" <version>/romconfig.f"

...where version represents the particular SEAforth chip that you are
using. For example, the an S40C18 evaluation board uses c7Fr01. This
file will be found in your vf directory, whose path is correctly specified
by v.VF.

The command:

include <filename>

will cause the file filename to be processed by the compiler.

The word include will assume that files are in the same directory as the
master file. If you have a large number of files (e.g., programs for many
nodes) you may wish to organize them in sub-directories, which may be
reflected in your include statement.

It is good practice to load all your files out of the master file. This makes
it easier to manage your application, because you can see in one place
exactly which files are used and in what order.

Glossary
include <filename> (—) H include
Directs the compiler to process filename (which may include path
specifications).

v.VF (— addr len) H v‐dot‐vf
Pushes onto the host’s stack the string parameters (address and length)
for the path to files in the vf directory that contain ROM code for each
supported version of the SEAforth chip.

+include" <filename>" (addr len —) H plus‐include
Directs the compiler to process filename (a string terminated by a ") in the
path given by the string parameters on the stack.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%202.1.2

VentureForth Programmer’s Guide

16 Using VentureForth

2.1.3 Launching a VentureForth Application

Send feedback A VentureForth application will have a .vfp (project) file constructed
according to instructions in Section 2.1.1. Launch it as follows:

• Under Windows, double-click on its icon.
• Under Linux, type ./<filename> on the command line.

These steps will launch the VentureForth compiler and compile its
application master file and (if requested) download it to the chip.

Figure 2.1 Sample application loaded in VentureForth under Windows

Figure 2.1 shows the result of launching the blinktest.vf sample
application provided with your SEAforth evaluation board under the
Windows OS. The version discussed here is for the SEAforth S40C18.

Here we see that the ROM images for all nodes on a 40-node part have
been compiled; this step constructs the symbol tables for routines in each
node’s ROM so that the next step, compiling code to run in RAM, will be
able to reference them. The next line generates code for some of the
“outside” nodes (capable of doing I/O). The last line establishes a
connection with a FORTHdrive, downloads the code, and starts it
running.

The process of developing and testing code such as this example is
covered in the next several sections.

2.2 Compiling Code for a SEAforth Node

Send feedback In this example, the master file blinktest.vf (shown in Listing 2.3)
specifies what code will run in each node, and in what order the code
should be delivered to the nodes.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%202.1.3
mailto:feedback@intellasys.net?Subject=VFRM%20Section%202.2

VentureForth Programmer’s Guide

Using VentureForth 17

.

At the beginning, the line:

v.VF +include" c7Fr01/romconfig.f"

compiles the ROM code for the target part (on an S40C18 evaluation
board). This generates symbol table information for all the entry points
in the ROMs. The path to this file is relative to the location of this file in
the directory structure. The program for each node is specified
separately in five steps.

1. Specify the node, for example, 10 {node
2. Specify the address at which compilation starts, for example, 0 org
3. Specify the entry point address for the code, for example, here =p

(This can be done anytime before leaving the node).
4. Provide the node’s source code. The source can be inline in the file

or included from another file. In this example we used three files in
addition to the master file.

5. Invoke node} at the end of each node

Each node’s program goes into a buffer, which will be sent to the chip
when all nodes are complete, using a process described in more detail in

Listing 2.3 blinktest Sample application listing

\ Pass through many nodes and ports, toggling I/O
\ as much as possible; make node 29 toggle the LED

\ This example file wiggles many of the output pins
\ available on the S40C18 testboard, including three
\ digital pins and the three DAC pins.

v.VF +include" c7Fr01/romconfig.f"

33 {node 0 org 'r‐‐‐ =p node}
10 {node 0 org here =p include toggle17‐1.vf node}
20 {node 0 org here =p include toggle17‐1.vf node}
29 {node 0 org here =p include blinkLED.vf node}
36 {node 0 org here =p include sawtooth.vf node}
37 {node 0 org here =p include sawtooth.vf node}
39 {node 0 org here =p include sawtooth.vf node}

\ Build a stream that reaches each of the programmed nodes
19 29 39 38 37 36 35 34 33 32 31 30 20 10 14 nodePath

reset \ reset prepares the system to run the code in the Simulator
 \ enter simulate or sim to start the simulator
cr

[x] find‐drive /USBdrive [x]>USBdrive close‐drive

VentureForth Programmer’s Guide

18 Using VentureForth

Section . The code is collected into a stream which will be loaded into the
chip via a root node and thence through a predefined path; the command
that does this is nodepath. Once the stream is built, the chip is then reset,
the I/O connection to the part is found and initialized, and the stream is
delivered. This process, known as a stream loader, delivers each packet of
code to the node for which it was compiled.

The last line is specific to the specific target board; it transmits the stream
designated by [x] (which was constructed by nodepath) to the device.

The actual program that each node will be asked to run in this example
is defined in one of several separate files: toggle17‐1.vf, sawtooth.vf,
and blinkLED.vf. These are loaded as necessary for each node to be
exercised..

The program blinkLed in Listing 2.4 is designed to be the entire behavior
of a node connected to an LED (Node 29 in Listing 2.3). It is constructed
as an infinite loop (see Section 3.3.5); once its designated node starts
running this, it will blink until it is reset. This is typical of node
programs. However, if you want a behavior to be performed only once
or a specified number of times, you must provide the node with
something to do once it is finished. An empty begin ... again loop is a
possible strategy; putting the node to sleep is an alternative that is more
conservative of power. How you put a node to sleep depends on where
it is in the array; see Table 4.2 for the respective commands

Listing 2.4 Example of a program to blink an LED

$8000 1 >stk \ Initial pulse width to T
: blinkLed (‐)
 $3FE00 # a! \ Mask to control pulse width
 begin
 620 # for \ Repeat 621 times
 30003 # !b \ Drive pins at bits 17 and 1 high
 dup for
 . . . unext \ Delay
 20002 # !b \ Drive pin at bit 1 low
 dup not for
 . . . unext \ Delay
 next
 $10000 # . + a@ and \ Increments pulse width & masks with A
 | again \ Repeat infinitely

VentureForth Programmer’s Guide

Using VentureForth 19

2.3 Downloading Your Program To The Array

Send feedback The only way to get an application into a SEAforth chip is to send it to
one of the nodes that is able to load an application through external I/O
pins. Each of the SEAforth nodes that has a boot driver understands a
protocol for booting an application. In this section, we will discuss the
basic principles of booting, illustrated by our sample program. The
process is discussed in more detail in Section 4.3.

2.3.1 Streams

Send feedback A stream is the mechanism for delivering a collection of images
(containing program and/or data) to nodes. The compiler builds a
memory image for each node that has code or data compiled into it.
Subsequently, the stream syntax is used to build a port-executable
delivery wrapper around the images so that the images will be delivered
to nodes by cooperative execution of all nodes along a path.

The path through which the stream will pass can be specified as a
continuous snake-like path, or as a series of branching streams. Some
applications can be delivered using a simple non-branching path. The
syntax for that could look like this:

19 18 17 16 15 14 13 12 11 10 20 30 31 32 3 34 35 36 37 38 39 29 22 nodePath

In this example the stream will enter through the synchronous serial port
on Node 19, and go through all 22 nodes in the order given. The last
number passed to nodePath is the count of nodes used in this stream (22).

Many applications will need to have the nodes begin execution in a
synchronized way, such that no node begins interacting with its
neighbors before they have had their code delivered and are ready to
interact. This can be done by calling the word 19Stream which will build
a stream suitable for sending to all nodes through node 19 (the node
used on the SEAforth evaluation boards to load using synchronous serial
communication). This stream will use branched delivery to fill all nodes
that need code or data, and a wake-up synchronization strategy called
dominos. This can be completely customized, using a process described
further in Section 4.3. Similar pre-defined commands to use alternative
initial nodes are available for the S40C18 parts. These are described in
Section 2.3.2.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%202.3
mailto:feedback@intellasys.net?Subject=VFRM%20Section%202.3.1

VentureForth Programmer’s Guide

20 Using VentureForth

Glossary
nodePath (n1 n2 ... nn n —) H node‐path
Constructs the stream path through which the program for each node
will be delivered, for n nodes beginning with n1.

2.3.2 Stream Delivery

Send feedback Once a stream has been built, three procedures are provided to deliver it:

• via a synchronous port (on Nodes 10 or 19 on the S40C18 parts),
• via an asynchronous port (Node 33 on the S40C18), or
• from an SPI-controlled flash device (Node 32 on the S40C18).

The evaluation board uses Node 19, which is connected to the USB
interface to the PC. The command 19stream provides a generic stream
load to all nodes on both the S24 and S40C18 parts. The S40C18 parts
also offer generic stream loaders for the other supported external ports
listed above. These are described in the glossary below.

Alternative custom methods that may be used in applications are
described in Section 4.3 and Section 5.2.

Glossary
10stream (—) S40 10‐stream
Loads all nodes via the synchronous port on Node 10.

19stream (—) A 19‐stream
Loads all nodes via the synchronous port on Node 19.

32stream (—) S40 32‐stream
Loads all nodes via the SPI port on Node 32.

33stream (—) S40 33‐stream
Loads all nodes via the synchronous port on Node 33.

2.4 Using the VentureForth Simulator

Send feedback When code is compiled, the object for each node is placed into a virtual
space representing the ROM and RAM content of the node. From there
we can gather up the compiled object and send it to a real chip, using the
stream loader which is described later. However, during simulation we

mailto:feedback@intellasys.net?Subject=VFRM%20Section%202.3.2
mailto:feedback@intellasys.net?Subject=VFRM%20Section%202.4

VentureForth Programmer’s Guide

Using VentureForth 21

can skip the download process, and have the simulator just pretend that
all the code is already in the SEAforth chip.

The command reset tells the simulator to run as though it is executing
the code that is already in the SEAforth chip’s RAM. Alternatively, we
can attach a testbed which simulates an external connection, and the
command power will tell the simulator to simulate the actual download
process prior to running the application code.

The command simulate starts the simulator. The word simulate has a
shorter synonym, sim. When simulate is invoked, a two-dimensional
display appears, showing the status of all nodes. Pressing the space bar
causes the simulation to proceed, at a rate of one step per press, by
default. You may request more detailed representations of up to four
nodes, by using the command watch4.

Listing 2.5 Example of simulator initialization

The simulator commands may be used from the command line or
included in the file that loads your application. Most of the demo
applications provided with the SEAforth evaluation system auto-
matically set up simulator displays. An example is shown in Listing 2.5.

The display for each node in the
simulator is organized in a grid
mimicking the ordering of nodes on
the actual chip. You’ll notice that
some nodes are red and some black;
the red nodes are the ones that are
active. These correspond to the
nodes for which programs were
compiled in Figure 2.1, plus Node
19, which is handling the host
communications. When you first

launch the simulation, you’ll see that all of them are attempting to do a
fetch, and the registers all have the same initial values. The value $15D in
the B register is the IOCS (I/O Control and Status) location; B is set to
this by reset, and many chip functions make use of it.

power (Initialize the simulator to include the boot process)

19 ‐1 20 05 watch4 \ Detailed info for nodes 19, 20. and 5
1224 setstep ‐1 setmax \ Quickly display every 1224th step
sim \ Type space to single‐step, return to exit.

00 v195
4*fetch
a=15555
 b=15D<
p =195
r=15555
t=15555
s=15555

Node#

Opcode

Content of
address bus

Registers

Figure 2.2 Information presented
for each node in the simulator

VentureForth Programmer’s Guide

22 Using VentureForth

The little carets (such as < in the B
register line) indicate that a node is
reading or writing to or from a
neighbor. They are intended to look
like arrows, so you can see that a
node wants to, for example, read
from its left neighbor. The
indentation of the B register display
makes room for left/right arrows.
The top arrow is represented by a
“v” on the top line, and the bottom
arrow (^) is between the rows.
Node 00 can receive input from its
neighbor on the right, Node 01, or

from Node 06. Since it’s in the lower left corner of the array, however, it
has no neighbors on the left and bottom sides. Often black (inactive)
nodes have arrows on all four sides (unless they’re on an edge),
indicating that they can receive commands from any neighbor, although
in some circumstances they await commands only from certain
neighbors.

Figure 2.3 shows the detailed display of one of the nodes selected by
watch1, watch2, or watch4. Here you can see not only the state of all
registers, but the entire stacks as well. You can also see the current
instruction word being processed, the current slot, current opcode, and
its translation as an instruction (push, in this case).

Note: since the simulator runs in the host PC, the glossary shows the PC
stack, not a SEAforth stack.

Glossary
reset (—) H reset
Select the mode that simulates code in the target chip.

power (—) H power
Select the mode that simulates a download before running the application.

simulate (or sim) (—) H sim
Start or resume simulation. While the simulator is running, you may
single-step it by pressing the spacebar, or stop it by pressing any other key.

simq (—) H sim‐q
Start or resume simulation and run for the number of steps previously
specified by setmax or upto. “Q” stands for “quiet,” meaning that the
display will not refresh.

node 05
adr=. 0 pc= 1 iw=366BC
slot=2 opc=1D inst=push
 s t r a b
15555 15555 15554 195 15D
15555 157FE
15555 3FFFE
15555 15554
 0 15554
15400 ^15554
15555 15554
15555 15554
15555^4 15554 1A4D854

Figure 2.3 Detailed node information
produced by the watch<n> words

VentureForth Programmer’s Guide

Using VentureForth 23

setmax (n —) H set‐max
Set the simulation to run for n steps or until stopped by a non-space
keypress, whichever comes first. A value of -1 means run continuously.

setstep (n —) H set‐step
Set the simulation to run for n steps without refreshing the display
between steps.

upto (n —) H up‐to

Set the simulation to run without display until step n has occurred, and
then the simulator will exit. Invoke sim again to begin simulating. The
simulator will use the values supplied to setmax and setsteps.

fixate (n —) H fixate
Focus the simulation on Node n, by stepping continuously until a key is
pressed, but updating the display only when Node n is awake.

active (n —) H active
Step quietly (without display) until Node n becomes active, then
continues with simulate.

watch1 (n —) H watch‐one
Add a detailed display of Node n to the simulator display.

watch2 (n1 n2 —) H watch‐two
Add a detailed display of Nodes n1 and n2 to the simulator display.

watch4 (n1 n2 n3 n4 —) H watch‐four
Add a detailed display of up to four nodes to the simulator display. The
four will be in the order n1=top left, n2=bottom left, n3=top right,
n4=bottom right. A value of -1 will cause that position to be skipped.

.adrs (addr len —) H dot‐address
Display a combination memory dump and disassembly for the current
node, starting at addr and extending for len words.

dump (addr len —) H dump
Display a more comprehensive memory dump and disassembly for the
current node, starting at addr and extending for len words. This is
particularly effective for dumping a stream in the “external node” [x]
(see Section 4.4). You can see which node particular sections of code
were compiled for.

dumpRAM (—) H dump‐RAM
Runs .adrs for the full RAM on every node in the chip, providing a
complete listing of the RAM code compiled for this project.

VentureForth Programmer’s Guide

24 Using VentureForth

dumpROM (—) H dump‐ROM

Runs .adrs for the full ROM on every node in the chip, providing a
complete listing of the ROM code compiled for this project.

25

Chapter 3 VentureForth Commands

In this chapter we’ll discuss the VentureForth commands that the
compiler will render into machine code. In many cases, there is a one-to-
one correspondence between VentureForth words and SEAforth machine
opcodes. However, there are also a number of compiler directives whose
purpose is to manage program flow-of-control structures, comments,
and other compiler-level functions, as well as pre-defined macros that
provide useful capabilities.

Some commands that have specific purposes are documented in their
respective sections; this chapter covers the general-purpose functions.

3.1 Primitive Commands

Send feedback This section covers the commands that correspond directly to machine
instructions. Here we will treat them as language elements.

Each of the commands in this section has a one-to-one correspondence to
the opcode it compiles. Each compiles its opcode in the next open slot of
the instruction word that the compiler is currently constructing. The data
sheet specifies the runtime characteristics of each of these opcodes.

3.1.1 Stack Operations

Send feedback The commands described in this section affect only the stack Registers T,
S, and R, plus the consequent adjustments to the data and return stacks
as a result of items being pushed or popped.

Stack management on the circular stacks in the SEAforth parts requires
special strategies. Its bounded stacks allow two unconventional usages:

• “Circular re-use” means reading beyond the theoretical end of the
stack. Because the stacks are implemented as arrays, reading a

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.1
mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.1.1

VentureForth Programmer’s Guide

26 VentureForth Commands

value (pop, drop) just moves the pointer to the previous location
modulo 8 (the size of the circular stack), leaving the data in place.
When read repeatedly, the pointer eventually returns to that posi-
tion, where the same data will be read again. This saves reloading
literals or calculated values from memory when they are used
repetitively.

• “Programming with abandon” is simply leaving data on the stack,
until it’s overwritten when the stack pointer circles around. After
writing to a location, the pointer moves to the next location modulo
the stack size. When a stack is written repeatedly, the effect is to
overwrite previously written data which has been “abandoned.”
This saves crucial opcode space (and time) compared to explicitly
moving the stack pointer back (drop, pop).

In both situations it’s important to distinguish between intentionally and
inadvertently causing the behavior: one is a feature, the other is a bug!

Glossary
dup (x — x x) A dup
Pushes a copy of the top stack item onto the stack.

drop (x1 x2 — x1) A drop
Discards the top data stack item.

over (x1 x2 — x1 x2 x1) A over
Pushes a copy of the second stack item onto the stack.

push (x — R:x) A push
Pops the top item from the data stack, pushing it onto the return stack.

pop (R:x — x) A pop
Pops the top item from the return stack, pushing it onto the data stack.

3.1.2 Register Operations

Send feedback The words described in this section are used to manage the A and B
registers, which contain 18-bit or 9-bit numbers, respectively.

Register A can be written and read, and is used for addressing memory
and ports as well as for temporary storage.

Register B can be written but not read. It is set to each node’s I/O
Control and Status location (IOCS, $15D) at reset/power-on, and is

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.1.2

VentureForth Programmer’s Guide

VentureForth Commands 27

generally left there unless two or more addresses are needed. It is
mainly used to accessi either IOCS or the address of its neighbor node.

NOTE: don’t confuse the register commands a@ and a! (which read and
write the A register itself) with the memory commands @a and !a (which
read and write the contents of the memory or port address that is currently in
A). Similarly, don’t confuse b!, which puts something in the B register,
with !b which stores something into the location whose address is in B.
See Section .

Glossary
a@ (— x) A a‐fetch
Fetches the value in Register A and pushes it onto the stack. Register A is
unchanged.

a! (x —) A a‐store
Pops the top stack item and stores it in Register A.

b! (addr —) A b‐store
Pops the data stack and stores the low-order 9 bits of the top stack item
in Register B.

3.1.3 Addressing Operations

Send feedback Each SEAforth core has 64 18-bit words of RAM and 64 18-bit words of
ROM. Addresses $00 to $3F refer to RAM, while addresses $80 to $BF
refer to ROM. When addressing either RAM or ROM, bit 6 is not
decoded. As a result, addresses $40 to $7F map to the addresses $00 to
$3F in RAM, and $C0 to $FF map to $80 to $BF in ROM.

The words described in this section provide access to local memory and
ports. They use either the A or B register (which contain 18-bit or 9-bit
numbers, respectively) or Register P.

NOTE: don’t confuse the commands a@ and a! (which read and write the
A register itself) with @a and !a (which read and write the contents of the
memory or port address that is currently in A).

Glossary
@a (— x) A fetch‐a
Fetches the contents of the location whose address is in Register A and
pushes it onto the stack. Register A is unchanged.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.1.3

VentureForth Programmer’s Guide

28 VentureForth Commands

!a (x —) A store‐a
Pops the top stack item into the memory location whose address is in
Register A. Register A is unchanged.

@a+ (— x) A fetch‐a‐plus
Fetches the contents of the memory location whose address is in Register
A and pushes it onto the stack. Register A is incremented by one when
pointed to a RAM or ROM memory address, but not when Register A
points to a port.

This command is used to access consecutive memory locations. The
incrementing behavior of this instruction is such that it will automatically
wrap at the address limits of ROM or RAM. That is, if the address in A is
$07F (RAM) an increment will wrap to 000, and the address $0FF will
wrap to $080.

!a+ (x —) A store‐a‐plus
Pops the top stack item into the memory location whose address is in
Register A. Register A is incremented by one when pointed to a RAM or
ROM memory address, but not when Register A points to a port.

This command is used to fill consecutive memory locations. The
incrementing behavior of this instruction is such that it will automatically
wrap at the address limits of ROM or RAM. That is, if the address in A is
$07F (RAM) an increment will wrap to 000, and the address $0FF will
wrap to $080.

@b (— x) A fetch‐b
Fetches the contents of the location whose address is in Register B and
pushes it onto the stack. Register B is unchanged.

!b (x —) A store‐b
Pops the top stack item and stores it in the location whose address is in
Register B. Register B is unchanged.

@p+ (— x) A fetch‐p‐plus
Fetches the contents of the location pointed to by Register P and pushes
it onto the stack. Register P is incremented by one when pointed to a
RAM or ROM memory address, but not when it points to a port.

This command may be used to access consecutive memory locations. The
incrementing behavior of this instruction is such that it will
automatically wrap at the address limits of ROM or RAM. That is, if the
address in the Register P is $07F (RAM) an increment will wrap to 000,
and the address $0FF (ROM) will wrap to $080.

VentureForth Programmer’s Guide

VentureForth Commands 29

!p+ (x —) A store‐p‐plus
Stores the top stack item in the location pointed to by Register P. Register
P is incremented by one when pointed to a RAM or ROM memory
address, but not when it points to a port.

This command may be used to fill consecutive memory locations. The
incrementing behavior of this instruction is such that it will
automatically wrap at the address limits of ROM or RAM. That is, if the
address in Register P is $07F (RAM) an increment will wrap to 000, and
the address $0FF (ROM) will wrap to $080.

3.1.4 Logical Operations

Send feedback The commands in this group perform Boolean and complement
operations.

Glossary
not (n1 — n2) A not
Performs a bitwise inversion on n1 to give n2.

and (n1 n2 — n3) A and
Performs a logical AND of n1 and n2 to produce n3.

xor (n1 n2 — n3) A xor
Performs an exclusive OR of n1 and n2 to produce n3.

3.1.5 Arithmetic Operations

Send feedback There are very few single-instruction arithmetic commands in
VentureForth. Instead, there are subroutines available in most nodes to
do some computations. See Section A.2 or Section B.1 for details.

Please note that the + and +* instructions take two cycles. As a result,
they must be preceded by either a nop (., see Section 3.4.4) or one of the
instructions flagged as “helps plus.” See the data sheet for details.

Glossary
+ (n1 n2 — n3) A plus
Adds n1 and n2 to produce n3. In standard mode, the carry bit is not
affected, but in extended mode it is; see Section 3.1.6.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.1.4
mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.1.4

VentureForth Programmer’s Guide

30 VentureForth Commands

+* (n1 n2 — n1 n3) A plus‐star
Computes a partial product, given a multiplicand in the high bits
(possibly all 18 bits) of S and a multiplier in the low bits (possibly all 18
bits) of A. The low word of the result is in A and the high word is in T. +*
is a building block for multiply and related operations. It should be used
only in standard mode. If it is used in EA mode, the carry must be
cleared first.

The S24 doesn't use the A register. Instead, multiplicand is in the low bits
of T and the result is in T alone.

2* (n1 — n2) A two‐star
Performs an arithmetic left shift on n1 to give n2 (equivalent to multiplying
by 2).

2/ (n1 — n2) A two‐slash
Performs an arithmetic (signed) right shift on n1 to give n2 (equivalent to
dividing by 2).

Arithmetic macros and subroutines are discussed further in Section A.2
for the S24 parts, and Section B.1 for S40C18 parts.

3.1.6 Extended Mode Arithmetic (S40C18 only)

Send feedback The SEAforth 40C18 parts extend the instruction set to facilitate
arithmetic on large numbers. Such arithmetic is required by, for example,
cryptographic algorithms that involve modulo multiplication and
exponentiation. Only + and +* are affected by extended mode.

The major change that extended mode brings to + is the use of the carry
bit. In standard mode, the carry bit is ignored (treated as zero). In
extended mode, however, + adds the top two stack items and the carry
bit, which is latched out of the high-order bit of the T register.

Extended mode is selected by setting bit 9 ($100) in Register P. When
that bit is not set, + and +* do not affect the carry bit or Register A.

To add large numbers in extended mode, first clear the carry bit, then
add pairs of 18 bit words of the numbers, starting with the low order
word, so that the carry propagates upward through the sum (an effect
known as ripple carry). To subtract, on the S24 you may add the one’s
complement (produced by using not) of one of the numbers to the other
in in a similar fashion, except that in this case the initial carry is set to 1,

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.1.6

VentureForth Programmer’s Guide

VentureForth Commands 31

thus producing the two’s complement of one of the arguments. On the
S40C18 you may negate and add; see Section B.1.

To clear the carry latch, you may use the phrase:

dup xor dup . +

To set it, you may use:

dup xor not dup . +

If you have throwaway values on the stack (e.g., left from a previous
operation) you may do this more concisely: adding two positive numbers
clears the carry bit, while adding two negative numbers sets it.

The extended mode +* is used as a building block to multiply two
numbers (in S and A), and works by computing a series of partial
products, which are added as they are generated. It maintains a double-
length (36-bit) value in Registers T and A (which, for convenience, we’ll
refer to as T.A), with the least-significant word in A. Note: T should be
cleared before the first +* in a set.

If the least-significant bit of A is 0, then the 37-bit (sign extended) value n
T.A is simply shifted right one bit. However, if the least-significant bit of
A is 1, the content of S is first added to T before the whole 37-bit value in
T.A is shifted. In either case, the LSB of T is shifted into the MSB of A.

The rules for ripple carry and the potential need for a nop or other delay
which applies to the plus opcode also applies here (see the S40C18 Data
Sheet for details). Preceding a +* with a nop will always provide
sufficient time for the ALU to settle, but other approaches are also
discussed in the data sheet.

The result of executing 18 +* instructions will be a signed 18x18 multiply
producing a 36-bit product of S and A; however, it is possible, through
careful treatment of data, to perform shorter and faster multiplys.

3.2 Definitions, Calls and Returns

Send feedback The Forth language, upon which the SEAforth architecture is based, is
extremely modular. Subroutines (often called “words”) are extremely
small, often only a few instructions in length. The modularity of Forth
facilitates extreme code density as a consequence of being able to re-use
even very short code segments. This offers advantages not only in
overall program size, but also program reliability, because it’s extremely
easy to validate short, simple code segments.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.2

VentureForth Programmer’s Guide

32 VentureForth Commands

Use of the data stack for parameter passing is an important element in
making the relationship between these tiny routines simple and fast.
There are no “calling sequences” such as one finds in C and other high-
level languages: Forth words simply expect their parameters on the data
stack and leave their results there.

The basic structure of a definition in VentureForth is:

: <name> (stack‐on‐entry ‐ stack on exit) <commands> ;

Subsequent reference to name in other definitions will cause
VentureForth to compile a call to it. Note that the comment containing
stack information has no technical consequence — it is merely a
comment, but an essential one for program maintainability.

For example:

: double (n — n*2) dup . + ;
: 2+2 (— n) 2 # double ‐;

In the definition 2+2, VentureForth will compile a literal 2 followed by a
tail-recursion jump to double* and a return to whatever word called 2+2.

SEAforth nodes differ from conventional microcontrollers in that their
local memory is extremely limited. As a result, programmers are
encouraged to take advantage of the fact that all the symbol-table
information for a definition resides only in the host compiler; only
executable code exists in the target. Therefore, rather than have 2+2
above actually call double, one might program this sequence thus:

: 2+2 (— n) 2 #
: double (n — n*2) dup . + ;

Here the literal 2 is pushed on the stack, and the code sequence

dup . + ;

(which follows immediately in target memory) is executed. 2+2 “falls
through” into double, and the return compiled by ; at the end of double
returns to the caller of 2+2 or the caller of double (if it was called
explicitly rather than via 2+2). The definition of 2+2 is faster due to the
absence of the jump around double in the first version.

Here’s a similar example of two entry points into shared code:

: abs (n ‐ n) ‐if
: neg (n ‐ n) not 1 # . + then ;

Here abs will perform neg if its argument is negative.

 * double could be defined more efficiently using 2*, but this version is more instructive.

VentureForth Programmer’s Guide

VentureForth Commands 33

The various words used to manage calls and returns in VentureForth
follow.

Glossary
: <name> (—) A colon
Generates a label for the name that immediately follows, and begins
compiling code associated with that label. Subsequent use of the label in
a definition will compile a call to it. Labels reside only in the host
compiler, and do not affect the target image, which contains only code.

‐; (—) A minus‐semi‐
colon
Converts a call that immediately precedes it to a jump (that is, nothing
is pushed on the return stack and there will be no return). In the code
example given above, if 2+2 is defined as:

: 2+2 (— n) 2 # double ‐;

...then there will simply be a jump to double, and the return at the end of
double will go to the location following the call to 2+2.

; (R:addr —) A semi‐colon
Generates a return to the address in the R register, popping the return
stack. The compiler will automatically convert a call to a jump and
omit the return if a call immediately precedes ; (tail recursion).

call (— R:addr) A call
During compile time, call pops address off of host stack and compiles a
call to that address.

Generates a call to the specified address, pushing the address in the P
register onto the Return Stack. This is useful when you wish to call
something other than a named entry point, such as a port address. For
example:

'rd‐u call

...executes a multiport call to the Right, Down, and Up ports.

;: (R:addr1 — R:addr2) A semi‐colon‐colon
Used for making co-routines. The co‐routine opcode calls the address
on the return stack. It is named because of its usefulness in going back-
and-forth between two cooperating routines. In this view it returns to its
caller while saving its own location for a later return.

VentureForth Programmer’s Guide

34 VentureForth Commands

An example of this in use is shown in Listing 3.1.

The purpose of this code is to respond to a write request from the
neighbor node in the Up direction (see Section 4.1), which will be
indicated by bit $200 in the IOCS (whose address is in B). If the bit is set,
we will respond by storing the Up port’s address in B. We know that this
port will contain a call, because that is how inter-node conversations are
initiated, so we can read this from the port and push it onto the return
stack. The actual ;: command simulates executing the call in such a way
that the return will go to the next instruction ('iocs # b!). The last
instructions reset B to its normal contents (IOCS), and discard the result
of the and given to if (since VentureForth’s if does not discard its
parameter).

3.3 Program Structures

Send feedback The Forth language has always used structured techniques to manage
loops and conditionals, rather than arbitrary branches. This section
covers the words used to manage various forms of loops and
conditionals in VentureForth. These are conceptually similar to the
structures in Standard Forth, but there are some critical differences.
Programmers accustomed to programming in Standard Forth should be
alert to this fact!

As in Standard Forth, all program structures must be inside a definition.
Unlike Standard Forth, however, it is possible to branch into what
appears to be a different word. This is addressed in Section 3.2. In other
words, the destination of a branch doesn’t necessarily have to fall within
the same definition as its origin. The important exception to this is that
structures built with for, next, and unext (Section 3.3.4) use the return
stack for the loop counter; therefore, you may not do anything that will
modify R within the range of a for...next or for...unext structure such
that the loop counter becomes unavailable. That is, you may do a push

Listing 3.1 Example of co‐routines

: poll (‐)
 @b $200 # and if \ Is write request set?
 '‐‐‐u # b! \ “Up” neighbor port to B
 @b push ;: \ call in B to R; execute it.
 'iocs # b! then \ Restore IOCS address to B
drop ; \ Discard 'if's' argument & return

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.3

VentureForth Programmer’s Guide

VentureForth Commands 35

and subsequent pop if both are within the loop, but an unbalanced push
or pop will affect the availability of the loop counter.

Being faced with small program resources and tight timing constraints
encourages iterative code optimization. Because of the natural isolation
of code in each node, the code optimization proceeds toward more and
more specialized and less general functions. Pieces of code may shift
between caller and called in ways that may look capricious to the casual
observer but which may represent a significant savings over first cut
coding. It is therefore especially important for VentureForth
programmers to stop and document relationships and dependencies that
will not be obvious to the unwary reader.

3.3.1 A Simple Branch

Send feedback The word jump compiles an unconditional branch to an address specified
by the host stack, when executed it will transfer control to the ompiled
address. It is used by a number of the words in the next sections, such as
repeat, again, and else, all of which need to compile an unconditional
branch.

The P register can be used to read, write or fetch instructions from either
memory or a neighbor port. The only way to load a value into P is with a
branching instruction, of which jump is the simplest and most common.
The most common direct use of jump is in connection with port
execution, described in Section 4.3.1.

Glossary
jump (—) A jump

At compile time, jump takes an addredd on the host’s stack and compiles
a jump to it. At run time, jump branches the the address.

3.3.2 Conditionals

Send feedback The basic conditional structure in VentureForth is:

... if <code‐for‐T‐nonzero> else <code‐for‐T=0> then ...

The word if will test the value in T. If it is non-zero, the code between if
and else will be executed, and then control passes to the word following

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.3.1
mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.3.2

VentureForth Programmer’s Guide

36 VentureForth Commands

then. If T is zero, the code following at else will be executed, instead.
Figure 3.1 shows the logical flow in this structure.

NOTE: the data stack is not popped by VentureForth’s if as it is in Standard
Forth! T is not altered!

The else clause may be omitted in its entirety. That is, you may have a
conditional of the form:

... if <code‐for‐T‐nonzero> then ...

In this case, if the value in T is zero, the code immediately following if
will be skipped, and control will pass to the code following then.

Figure 3.1 Diagram of an if ... else ... then structure

In addition to if, there is also a word ‐if that behaves similarly, except
that it executes the code following if T is negative, rather than in the non-
zero case, thus:

... ‐if <code‐for‐T‐negative> else <code‐for‐T‐positive> then ...

As with if, the else clause may be omitted.

Glossary
if (n — n) A if
Tests the value in T. If it is non-zero, continues executing the code
immediately following. If T is zero, branches to the point immediately
following else (if there is one) or then (if there is no else clause).

‐if (n — n) A minus‐if
Tests the sign bit of the value in T. If it is set (T is negative), continues
executing the “true” code immediately following. If the sign bit of T is
zero (T is positive), branches to the point immediately following else (if
there is one) or then (if there is no else clause).

else (—) A else
Begins the optional “false” part of a conditional structure.

<flag> if <‘true’ code> else <‘false’ code> then <code continues>

If flag is non‐zero, execute ‘true’ code then
branch to location after then.

If flag is zero, branch to location after else
and continue through then.

VentureForth Programmer’s Guide

VentureForth Commands 37

then (—) A then
Terminates a conditional structure by resolving a forward branch
compiled by if, ‐if, else, or meanwhile (described in Section 3.3.3).

3.3.3 Indefinite loops

Send feedback An “indefinite loop” is one for which it is not known programmatically
how many times it will repeat. Typically, an indefinite loop is expected
to repeat either while a condition exists or until an event occurs.
VentureForth provides structures optimized for both conditions.

The structure:

... begin <code‐always‐executed> while <conditional‐code> repeat ...

...will continue to execute the conditional code so long as the argument
to while (in T) is non-zero. If while sees a non-zero, the conditional code
will execute and repeat will branch unconditionally back to the point
immediately following begin. Figure 3.2 shows a diagram of this
structure.

Figure 3.2 Diagram of a begin ... while ... repeat structure

NOTE: The data stack is not popped by VentureForth’s while as it is in
Standard Forth! T is not altered!

There do not have to be any commands between begin and while. If
there are commands there, they will always be executed at least once. It
is quite possible for the conditional code to be executed no times,
however, if the while test fails the first time.

As in the case of -if, there is also a ‐while. It tests the high bit of T, and
will continue while T is negative.

begin <code> <flag> while <conditional code> repeat <more>

If flag is non‐zero, continue to repeat, then
repeat the loop.

If flag is zero, branch to location after repeat
(leaving the loop).

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.3.3

VentureForth Programmer’s Guide

38 VentureForth Commands

The structure:

... begin <repeating‐code> until ...

Figure 3.3 Diagram of a for ... next structure

...will continue to execute until the argument to until (in T) is non-zero.
So long as the argument is zero, the repeating code will be executed.
When until sees a non-zero, execution will continue at the next
instruction following until.

NOTE: The data stack is not popped by VentureForth’s until as it is in
Standard Forth! T is not altered!

The variant ‐until is similar to until, except that it will exit the loop
when T is negative, rather than when it is non-zero.

The structure:

... meanwhile <skipped‐first‐time> then <repeating‐code> until ...

...will initially branch forward to the point following then, and execute
the repeating code. So long as until sees a non-zero value in T, it will
branch back to the code immediately following meanwhile. This
structure may also be terminated with ‐until, in which case it will loop
until T is negative. In most cases this structure will be faster than a while
loop because there is only one branch executed each iteration inside the
loop, but be careful to observe that the condition for the loop exit for a
while loop is opposite from the condition for until, and this will also
affect the overall loop efficiency.

Figure 3.4 Diagram of a meanwhile ... then ... until structure

for <looping code> next <code continues>

If index is non‐zero, next decrements it and returns
to the instruction following for.

If index is zero, code continues with next
instruction.

meanwhile <skipped 1st time> then <code> <flag> until <code continues>

If flag is zero, branch to location after
meanwhile to repeat the loop.

If flag is non‐zero, branch to location after
until (leaving the loop).

VentureForth Programmer’s Guide

VentureForth Commands 39

Following is a summary of the words used in indefinite loops.

Glossary
begin (—) A begin
Marks an address to which a backward branch may be compiled. Used
to begin loop structures.

while (n — n) A while
Branches forward to an address marked by repeat if the value in T is
zero. Falls through and continues the loops if the value in T is non-zero.

‐while (n — n) A minus‐while
Branches forward to an address marked by repeat if the value in T is
positive (its sign bit is zero). Falls through and continues the loop if the
value in T is negative (sign bit is one).

until (n — n) A until
Branches backward to an address marked by begin if the value in T is
zero. Falls through, exiting the loop, if T is non-zero.

‐until (n — n) A minus‐until
Branches backward to an address marked by begin if the value in T is
positive (its sign bit is zero). Falls through, exiting the loop when the
value in T is negative (its sign bit is one).

repeat (—) A repeat
Unconditionally branches back to an address provided by begin and
marks the start of the code reached by while loop exit.

meanwhile (—) A meanwhile
Unconditionally branches forward to an address provided by then, and
also marks the point to which a subsequent until or ‐until may branch.

3.3.4 Finite loops

Send feedback A finite loop is used when you have a known number of times for which
you wish your code to be repeated.

The structure:

... <n> for <repeating‐code> next ...

will execute the repeating code n+1 times. The word for will transfer n
from the data stack to the return stack. next will test it; while it is non-
zero, it will decrement it by one and branch back to the location
following for. When the value is zero, it will discard it and exit the loop.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.3.4

VentureForth Programmer’s Guide

40 VentureForth Commands

Figure 3.5 Diagram of a for ... next structure

An important variant of next is unext (micro-next). It supports loops that
reside entirely within a single instruction word. It manages R like next,
but instead of branching to a memory location, it branches back to slot 0
of the current instruction word. The body of the loop, therefore, can
contain up to three opcodes. When the unext loop exits, it continues
with the opcode in the following slot. unext is especially useful in that
doesn’t have to fetch an instruction until the loop finishes.

It is possible to start a finite loop using begin, but you must previously
have placed your counter in R using push.

Following is a summary of the words used in finite loops.

Glossary
for (n — R:n) A for
Begins a finite loop by pushing the n onto the return stack, and marks an
address to which a backward branch may be compiled. Used to begin
finite loop structures which will repeat n+1 times.

next (R:n — R:n‐1 if non‐zero | if zero) A next
Tests the counter in R. If it is non-zero, it decrements it and branches
back to the point marked by for or begin. If the counter is zero, it is
popped from the return stack and execution continues with the
instruction following next.

unext (R:n — R:n‐1 if non‐zero | if zero) A micro‐next
Tests the counter in R. If it is non-zero, it decrements it and branches
back to slot 0 in the current instruction word. If the counter is zero, it is
popped from the return stack and execution continues with the opcode
following unext. Unext uses address on host stack to verify that structure
is in single instruction word. unext aborts if the structure contains more
than an instruction word.

for <looping code> next <code continues>

If index is non‐zero, next decrements it and
returns to the instruction following for.

If index is zero, code continues with next
instruction.

VentureForth Programmer’s Guide

VentureForth Commands 41

3.3.5 Infinite loops

Send feedback An infinite loop is one which has no built-in countdown or terminating
condition. It is commonly used for the highest-level behavior of a
process or node, representing its entire behavior while power is on.

The infinite loop structure is:

... begin <repeated‐code> again ...

The code inside the loop will repeat until the node is reset.

Glossary
again (—) A again
Unconditionally branches back to a location marked by begin.

3.4 Compiler Directives

Send feedback All compilers need a set of commands that control the process of
generating code, but do not themselves generate target code. Such
commands are commonly called “compiler directives.” VentureForth is
no exception. These words are discussed in this section.

The behavior of the VentureForth compiler, like other Forth compilers, is
simply to parse text (usually from a source file) and execute the words as
they are encountered. Some of these words are “defining words,” which
will cause new definitions to be created; some add code to definitions
currently under construction; some create program structures, as
described in Section 3.3; others perform other useful functions such as
obtaining addresses of words, nodes, ports, or other objects and doing
useful things with them.

The words described in this section are all executed on the host computer
for the purpose of helping build a program which will be installed and
executed there at some later time on a SEAforth node. As a result, stack
parameters are for the host’s stack, and do not affect the target’s stack or
registers, helping build a program which will be installed and executed
on a SEAforth node at some later time.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.3.5
mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.4

VentureForth Programmer’s Guide

42 VentureForth Commands

3.4.1 Comments

Send feedback Well-commented code is essential for code sharing within a
programming team, as well as for publishing or sharing code and long-
term code maintenance.

Glossary
((—) H left‐paren
Begins a comment (text that will be ignored by the compiler) terminated
by) (right-paren). (is a word, and therefore must be followed by a
space delimiter.) is just a terminating delimiter, however, and does not
need to be set off by spaces.

\ (—) H back‐slash
Begins a comment that extends to the end of the current line. Like (, \
must be followed by a space.

3.4.2 Address Management

Send feedback The words in this section are used to specify the node as well as
addresses to which code will be compiled and where execution may
begin. These words, like others in this section, control behavior of the
compiler, not the target, and therefore only affect the host’s stack.

Glossary
equ <name> (n —) H e‐q‐u
Defines a constant in the compiler. Use of name pushes n onto the stack.

{node (n —) H bracket‐node
Starts compiling code for node n.

node} (—) H node‐bracket
Terminates compilation for the current node.

org (addr —) H org
Starts compiling code for address addr in the current node.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.4.1
mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.4.2

VentureForth Programmer’s Guide

VentureForth Commands 43

3.4.3 Node Initialization

Send feedback The words in this section are used to set up the initial state of a node,
including its stacks and registers. These may be used with all nodes,
except that the root node (the original node managing the stream loading
process) may not initialize its A or B registers or its stacks, because they
are used in the booting process.

Glossary
=p (addr —) H equal‐p
Starts executing code for the current node at addr.

=a (x —) H equal‐a
Initializes Register A to x at startup.

=b (addr —) H equal‐b
Initializes Register B to x at startup.

>stk (x1 x2 ... xn n —) H to‐stack
Initializes the target’s data stack to contain the n values listed. The first
value, xn, will be in T.

>rtn (x1 x2 ... xn n —) H to‐return
Initializes the target’s return stack to contain the n values listed. The first
value, xn, will be in R.

3.4.4 Slot Management

Send feedback Each word can contain up to four instructions. However, certain
instructions must be in certain positions (slots). Also, some instructions,
such as +, have timing requirements that can be satisfied by putting one
or more NOPs in a slot. Refer to the Data Sheet for details.

Glossary
. (—) H no‐op
Skips a slot in an instruction word. Often used before + and +*, and may
be required at other times. Consult the documentation for the specific
SEAforth parts you are using for further information.

nop (—) H no‐op
Synonym for . (mostly used in descriptive text; . is the preferred usage
in program source).

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.4.3
mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.4.4

VentureForth Programmer’s Guide

44 VentureForth Commands

| (—) H bar

Guarantees that the next open slot is slot 0. If the next open slot is not 0 it
fills the rest of the current instruction word with . (nop).

?| (—) H question‐bar

Guarantees that the next open slot is slot 0 or slot 1. If the next open slot
is not 0 or 1, fills the rest of the current instruction word with . (nop).

3.4.5 Conditional Compilation

Send feedback There are times when it is convenient to configure compilation of code
within a file. That is, you may have a file of definitions of which some
are required in all nodes, but some only in certain nodes. Since code
space is a scarce resource, it is good to be able to have switches that
specify what node you’re compiling for so that you may selectively use
or skip certain features. The commands for doing this resemble the

if ... else ... then

clause in general VentureForth (see Section 3.3.2).

A common use of this feature is to provide for a block of commentary
that may extend over multiple lines and include parentheses, as shown
in in Listing 3.2.

As is the case with the if ... else ... then structure, the [else] clause
may be omitted, but every [if] must be terminated by a [then]. And it’s
perfectly legitimate to nest [if] ... [else] ... [then] structures.

These commands are part of the host computer’s Forth system; therefore,
stack behavior reflects the host’s data stack, not the SEAforth processor’s
circular stack.

Glossary
[if] (t —) H bracket‐if
If t is non-zero, the text following will be processed until the next [else]
or [then] is reached. Note that t will be removed from the data stack.

Listing 3.2 Use of conditional compilation for block comments

0 [if] \ Note, this is always ‘false’
 ... \ Extended comments go here (as needed)
[then] \ Comment block ends

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.4.5

VentureForth Programmer’s Guide

VentureForth Commands 45

[else] (—) H bracket‐else
If the t before the most recent [if] is zero, the source following [else]
will be processed until the next [then] is reached.

[then] (—) H bracket‐then
This word marks the point at which interpretation of source will resume.

3.4.6 Programming Tools

Send feedback The words described in this section are used at compile time to provide
access to the code under construction.

There are two methods of compiling literals, though one is really a
higher-level implementation of the other.

@p+ 42 ,

...will push the number 42 onto the stack when this code is executed. The
phrase:

42 #

...will do the same thing. Which is preferable depends on the
circumstances. The command , (comma) will not affect the slot counter.
For example, the sequence in Listing 3.3 will leave 0 1 2 3 4 5 on the stack,
and the compiled result will look like Figure 3.6. However, the code
when executed will push the desired numbers 0 -1 2 and -4 onto the stack
(with -4 in T).

Listing 3.3 Example of consecutive literals

The reason is that, although , (comma) advances here, it does not
advance the slot counter in the word being compiled. Therefore, the
instructions were compactly compiled in Word 0, but when they are
executed they will advance Register P appropriately, picking up the
consecutive literal values.

0 org
here @p+
here 0 , @p+
here ‐1 , @p+
here 2 , @p+
here ‐4 ,
here

mailto:feedback@intellasys.net?Subject=VFRM%20Section%203.4.6

VentureForth Programmer’s Guide

46 VentureForth Commands

Figure 3.6 Result of compiling the code in Listing 3.3.

The circumstances leading to a choice of , over # are best illustrated by
an example. In this example the goal is to place on the stack the literal
number 1 beneath a word which is the encoded form of the instructions
dup dup xor (which, if executed, is a handy shorthand way to zero T).
One way to do this would be to write

 1 # @p+ | dup dup xor

and that would be fine, but if you want to put the instruction word dup
dup xor on the stack with the literal 1 on top of that, saying:

 @p+ 1 # | dup dup xor

would have them in reverse order. @p+ in slot 0, @p+ in slot 1 with 1 in the
next word, and then dup dup xor in the next word. The work around
would be:

 @p+ @p+ | dup dup xor | 1 ,

Glossary
' <name> (— addr) H tick
Returns on the host’s stack the target address of name (assuming it has
been previously defined in the target).

's <name> (n — addr) H <n>’s
Returns Node n’s address of name (assuming it has been previously
defined in that node).

, (n —) H comma
Compiles the number n into the next available word. This command is
often used in conjunction with @p+ to make a literal. For example, the
sequence:

@p+ 35 ,

...will compile the @p+ instruction followed by the number 35. When this
code is executed, the @p+ will fetch the 35 and push it onto the data stack,
while incrementing the P register past it.

@p+

0

-1

2

-4

@p+ @p+ @p+0

1

2

3

4

Slot 0 1 2 3
Word

VentureForth Programmer’s Guide

VentureForth Commands 47

here (— addr) H here
Pushes the address of the next available target location onto the host’s
stack at compile time. For example, the sequence:

here 42 ,

...will compile the number 42 into the dictionary, and push its address
onto the host’s stack at compile time. You may subsequently compile a
reference to this address.

(n —) H number‐sign
Compiles n into the dictionary as a literal (@p+ followed by n). This
means when the code in which it appears is executed, it will be pushed
onto the stack. The compiled result of 35 # is equivalent to the sequence:

 @p+ 35 ,

VentureForth Programmer’s Guide

48 VentureForth Commands

49

Chapter 4 Inter‐node Communication

Each SEAforth chip is a community of nodes. Versions have been
produced with 24 nodes (arranged 6x4) and 40 nodes (arranged 10x4);
other variants will doubtless be announced in time. Certain nodes on the
outside of the array have special I/O capabilities, and thus can
communicate with external devices; interior nodes can only
communicate with their immediate neighbors.

4.1 Basic Node Geography

Send feedback Figure 4.1 shows the designated functional types of nodes in a generic
S40C18 part (some specific parts may differ). The specific capabilities of
the outer nodes are described in more detail in the Data Sheet for each
individual part.

Figure 4.1 Block diagram of S40C18, showing I/O and direction ports

RL

L

U

D

RL

U

D

R

L

U

D

L

U

D

R

U

D

L05

D

U

R

U

L

U

R

U

L

U

RL

D

L

D D D D

R L R L

D

U

RL L

U

R

U

L

U

R

U

L

U U

U

0403020100

151413121110
synch

252423222120

353433
asynch

32
SPI3130

R

U

D

L07

D

R L

U

D

R L

D

U

R L

U U

U

06

1716

2726

3736

R

U

D

L09

D

R L

U

D

R L

D

U

R L

U U

U

08

19
synch18

2928

3938

No I/O Analog Digital 18‐bit addr bus Memory 18‐bit data bus SerDes

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.1

VentureForth Programmer’s Guide

50 Inter‐node Communication

Each individual node can communicate to its
immediate neighbors using ports that are
described using directional terminology: up,
down, left, and right. However, two adjacent
nodes both communicate to each other using

the same direction. That is, if Nodes 00 and 01 communicate with each
other, both will use their “right” ports.

A mnemonic may be used to refer to a chip’s direction ports: rdlu (Right,
Down, Left, Up). Each port is represented by one bit in a nibble, as shown
in Figure 4.2. A set of constants has been defined in the compiler to
provide the appropriate bit patterns for every possible combination. Their
names are of the form: '‐‐‐‐ where each of the dashes represents one of
the direction bits. For example, 'rd‐‐ is “right and down,” while 'r‐‐u
is “right and up,” 'r‐‐‐ is “right only,” and '‐dlu is “down, left, up.”

A summary of the direction port specification constants, showing the
resulting port addresses, is given in Table 4.1. Note that bits 4 and 6 are
active low, so that, for example, 0000 is down and up (bits 4 and 6 active).

Table 4.1 Direction port selection constants

Name
R

(bit 7)
D

(bit 6)
L

(bit 5)
U

(bit 4) Port Result

'‐‐‐‐ 0 1 0 1 $155 No port selected

'‐‐‐u 0 1 0 0 $145 Up

'‐‐l‐ 0 1 1 1 $175 Left

'‐‐lu 0 1 1 0 $165 Left, Up

'‐d‐‐ 0 0 0 1 $115 Down

'‐d‐u 0 0 0 0 $105 Down, Up

'‐dl‐ 0 0 1 1 $135 Down, Left

'‐dlu 0 0 1 0 $125 Down, Left, Up

'r‐‐‐ 1 1 0 1 $1D5 Right

'r‐‐u 1 1 0 0 $1C5 Right, Up

'r‐l‐ 1 1 1 1 $1F5 Right, Left

'r‐lu 1 1 1 0 $1E5 Right, Left, Up

'rd‐‐ 1 0 0 1 $195 Right, Down

'rd‐u 1 0 0 0 $185 Right, Down ,Up

r d l u

Bit 7 6 5 4

Figure 4.2 Direction bits

51

Any node can communicate with its immediate neighbors through the
appropriate (RDLU) port. If a node wishes to read from or write to its
neighbor, it puts an appropriate address in Register A or B to read or
write, or in P to execute.

As a simple example, here is how nodes in various parts of the array
would put themselves to sleep pending commands from elsewhere.

4.2 Port Execution

Send feedback SEAforth supports a powerful inter-node communications strategy
known as port execution. This strategy takes advantage of the fact that a
port is one cell (18 bits) wide, and can contain up to four instructions. It
works this way:

1. Node A decides it wants to send instructions to Node B, so it writes
an instruction word to the port it shares with Node B; Node A
sleeps until the data goes across the port and is accepted by Node B.

2. Node B must decide on its own that it wants to execute from Node
A, which it does by performing a jump to the port it shares with A.

'rdl‐ 1 0 1 1 $1B5 Right, Down, Left

'rdlu 1 0 1 0 $1A5 Right, Down, Left, Up

Table 4.2 Commands to enter “sleep” mode

Node positions “Sleep” command

Corners of array 'rd‐‐ jump

Sides of array 'rd‐u jump

Interior of array 'rdlu jump

Top or bottom of array 'rdl‐ jump

Table 4.1 Direction port selection constants (continued)

Name
R

(bit 7)
D

(bit 6)
L

(bit 5)
U

(bit 4) Port Result

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.2

VentureForth Programmer’s Guide

52 Inter‐node Communication

If Node B jumps to the port before A does its write, then Node B
will sleep until the instructions arrive.

3. When the condition exists that Node A has performed the instruc-
tion write, and Node B has performed the jump, then Node B will
execute the instruction word.

A port address is just a location in address space. You can read or write it
or jump to it, just as you would a memory location. However, the
“contents” of that location are not passive data or machine instructions,
as you’d find in memory, but are dependent on the action of the neighbor
on the other side of the port.

Jumping to a port means relinquishing complete control to the neighbor
on the other side of the port. A port jump is the universal
communications protocol, because the protocol itself becomes specified
by what passes through the port.

When Register P is pointing to a port, the usual auto-increment is
suppressed, so that subsequent instruction fetches will use the same port
address. Additionally, instructions that would normally increment the
Register P (such as @p+) will have the increment operation suppressed.
While in this state, a node executes everything that is sent to the port it is
fetching from. This state can be exited by sending a branch instruction in
the stream, such as a jump, a call or a return. This means that a node can
be made to execute code that occupies none of its RAM or ROM.

4.3 Building Program Loading Streams

Send feedback A process has been developed for sending a stream of compiled object
code to various nodes of a SEAforth processor by using the processor’s
port execution facility. The stream will enter through an I/O node, and
then be sent through ports to other nodes. Using this facility we can send
programs to the RAM of any node or combination of nodes, and also
initialize the stacks and registers of nodes so that the program we send to
the RAM does not have to contain initialization code to perform these
operations.

An example of a stream is given in the sample application Listing 2.3.
This information is primarily intended as a tutorial to describe possible
application strategies.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.3

VentureForth Programmer’s Guide

Inter‐node Communication 53

4.3.1 Definition of Terms

Send feedback Following are some terms that are used primarily in describing the
stream loading function.

I/O Node: A node connected to external pins that can perform I/O
functions such as serial I/O and SPI. These are always on the outside of
the chip. Consult your chip’s data sheet for details.

Root Node: The I/O node into which the stream is inserted.

Stream Path: The order in which the stream passes through nodes. The
first node in the Stream Path is the root node.

Port Execution: A SEAforth node can point Register P to the address of a
port by executing a branch to that address. When this register is pointed
at a port, the next instruction fetch will cause the node to sleep pending
the arrival of data on the port. When the data arrives, it will be placed
into IW (the Instruction Word), and executed just as if it came from RAM
or ROM.

Multiport execution: The addresses of ports are encoded in such a way
that one address can contain bits that specify as many as four ports. A
multiport address is an address in which more than one port address bit
is active. Multiport execution occurs when the a node is performing port
execution and the address in Register P is a multiport address. It is
required that only one neighbor node send code to a node that is
performing multiport execution. The purpose of multiport execution is
to allow a node to accept work from any direction, but only one direction
at a time.

Port pump: a process in which a node executes a loop that reads data
from one port and/or sends data to another port. There are several kinds
of port pumps that may differ in their form and purpose. If normal
branching or next commands are used, then the pump must reside in
RAM or ROM. If unext is used for the loop, and especially if the loop
instruction is executed from within a port, then no assistance from RAM
or ROM is required. This is the primary usage of the term “port pump.”
The port executing a port pump has the useful property that Register P
can be used to address at least one (and possibly both) of the directions.
If Register P is used for both directions it is called a multiport address port
pump. This pump uses the same address for the read address and the
write address, and so is a more efficient use of node resources. However,
it requires careful coordination so that the input direction is active
during the reads and the output direction is active during the writes.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.3.1

VentureForth Programmer’s Guide

54 Inter‐node Communication

Domino awakening: A method of starting all the nodes after their
initialization by sending a wake up signal that gets passed from node to
node. After nodes are initialized by the stream loader, they are put to
sleep until the signal awakens them, preventing program code from
interfering with the loading and initialization of other nodes.

Domino path: The order in which nodes are awakened. This is not
necessarily the same as the stream path. However, as it passes through a
given node, the domino path must include that port that was the entry
port for the stream path for that node.

Pinball: the word that is sent from node to node, following the domino
path, to cause the various nodes to awaken. By convention, this is a
RETURN instruction.

Current node: the node that consumes a stream via instruction words or
stores it more permanently into RAM or into a stack or an address
register within that node. When the stream is in motion (and before the
pinball is released) there is always one and only one current node. While
setting up for a pump, or initializing registers, or configuring the domino
path, a single node is current. If a node is running a two-port pump
using unext, it is no longer considered a current node.

4.3.2 Starting the Stream

Send feedback Every node in the Stream Path begins in one of two states: either waiting
at a multiport fetch or executing a multiport branch. In both cases the
multiport address will include the port through which the stream will
enter. This is the normal reset condition of the chip.

The stream is first delivered to one of the nodes with I/O capability. This
will be the root node for this stream. The I/O nodes expect to be passed
three words of information:

1. Execution Address
2. Load Address
3. Count

In the case of the port loader, the load address will be the address of the
port that connects the root node to the next node in the stream path,
unless the code is for the boot node. For example, if we use an S40C18
device that has an SPI node at Node 32, then the DOWN port of Node 32
(address $115) will connect to Node 22. In this example, Node 32 will
pass the stream to its DOWN port, so the stream will begin execution in
Node 22. Refer to to see the relationship between Nodes 32 and 22.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.3.2

VentureForth Programmer’s Guide

Inter‐node Communication 55

4.3.3 Nesting

Send feedback Continuing with this example, the content of the stream as it enters Node
22 will be instructions that will cause Node 22 to send most of the stream
on to the next node in the stream path. Bearing in mind that the node we
are entering will be doing either a multiport fetch or a multiport jump,
we must wake it in a way that works for both cases. Therefore the first
action of a nest is to send two executable words in rapid succession:

• a call to the port we are using to enter the node, and
• four instances of . (nop).

The effect of the call must be considered from the point of view of the
multiport fetch or the multiport jump. If the node is waiting in a fetch,
then the call will wake the node, but the call instruction itself will be
treated as data and dropped, because the node drops the data that
awakens it. On wake up, the node will notice which direction the next
data comes from and make a call to that port, thus yielding the same
result: a call to the port that is sending the stream.

If the node is performing a multiport jump instead of waiting in a fetch,
then the call will be executed, and the node will have its Register P
pointed at the port.

The call to the port through which we are entering may appear
redundant at first. However, it serves two purposes:

• It makes sure that while the stream is entering the node only the
port we want to use is reading (turning off the effect of a multiport
jump).

• Also, the call will cause the address the node was executing to be
placed on the return stack.

Therefore, if R is not changed during initialization, this node will go back
to its multiport jump when the stream loading process is done. If the
node was waiting, it will return to that state at the end of stream loading
if we do not initialize R to point to application code.

In our example, after the call has focused the attention of Node 22 to its
Up port, Node 22 will be told to fetch a literal value using the P register
as a pointer, thus allowing the next word in the stream to be data. This
data item will appear on Node 22’s data stack. Node 22 will then be told
to use the a! instruction to place this value in the A register. This process
can be used to set Node 22’s A register to point to the next node in the
stream path, so that a loop using @p+ !a+ will read data from the

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.3.3

VentureForth Programmer’s Guide

56 Inter‐node Communication

upstream (source) side of the stream path, and send the stream to the
downstream side. By carefully calculating the lengths of the stream data
segments we can arrange it so that each node will execute commands
long enough to enter a port pump, and then send data downstream until
all the downstream ports have been fed. Finally, more commands will
arrive to be executed, and these commands will initialize the node’s
RAM and registers.

4.3.4 The Domino Awakening

Send feedback Once all of the programs have been delivered to nodes and the registers
have been initialized, we want each node to begin performing its
appointed task. However, the performance of that task is likely to
involve using ports to communicate with it neighbors. Therefore we do
not want the node to begin until we are sure that all of the nodes have
been given their respective tasks, and are also waking up to start the
application. Therefore there are two requirements:

1. Put each node to sleep after initializing it.
2. Wake up all the nodes at (relatively) the same time, without inter-

fering with the initialization we have performed for those nodes.

The domino awakening process is designed so that a given node can
wake up more than one neighbor node, allowing a rapid spread of the
wake-up signal.

To meet these requirements, we put nodes to sleep as we finish
initializing them by executing a call to a multiport address. This address
must include the address of each port to which we want to send the
pinball, and also the address of the port from which the node was
initialized. Then we send a word that does a fetch on that multiport
address. This will cause the node to sleep pending the arrival of data on
one of the specified ports. We are not going to send any more data to that
node until we want the node to wake up. When the pinball eventually
arrives, the instruction word that does the fetch will do a subsequent
store to the next node or nodes we want to wake up. Because this
instruction word sleeps until the wake-up data arrives, then passes the
wake-up data to the next node, then enters the current node's
application, we call this process the domino awakening.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.3.4

VentureForth Programmer’s Guide

Inter‐node Communication 57

4.3.5 Summary of Steps

Send feedback A domino is a sequence of two instruction words. The first word causes
the node to focus its attention on the domino path (i.e., jump to a
multiport address that consists of all the ports in the domino path with
respect to this node).

The second word contains one of the following sequences:

1. @p+ !p+ (normal domino)
2. @p+ !p+ ; (next-to-last domino)
3. @p+ drop ; (last domino)

The @p+ will cause the node to wait for a pinball to come to it on the
domino path. The appearance of the pinball will satisfy the read caused
by the @p+ against the multiport jump’s destination address, and the
remainder of the domino will be executed (usually !p+).

The !p+ will cause the pinball to be sent to all the ports included in the
domino path for the affected node, thus a multiport write will occur. This
write will send the pinball to those nodes that are “downstream” in the
domino path, thereby waking them.

The multiport write will also send the pinball back to the node that
awakened the current node. Since that node will still have its Register P
focused on the domino path, the pinball will be executed. Since the
pinball is a return instruction, the node that receives the reflected pinball
will execute the return instruction and go to the address specified in the
R register. This address will either be the address specified as the start
address, or if no start address has been specified, it will be the address of
what the node was doing when the stream first arrived, i.e., a multiport
fetch or a multiport branch. It is important to note that the acceptance of
the reflected pinball causes the write to that port to be completed. If we
did not use the pinball as the return command, then the node sending
the pinball would have an unsatisfied write pending in the upstream
direction of the domino.

In the case of the final node in a domino chain, there is no node to which
the pinball must be sent, while there is often a direction to which the
pinball must not be sent. Therefore, there is no !p+ in this node’s domino
instruction. Instead, the last domino (specified by the word edomino in
the program) will be:

. @p+ drop ;

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.3.5

VentureForth Programmer’s Guide

58 Inter‐node Communication

Note two differences: the pinball is dropped because it is not needed any
more, and there is a ; at the end. This ; exists because there is no
downstream node to reflect the pinball back for the purpose of sending
the end node to its code.

There is one more special case. The second to the last domino in the chain
(the penultimate domino) will not receive a reflected pinball, because the
last domino does not reflect it with a !p+. Therefore the penultimate
domino (specified by the word pdomino in the program) will be

 . @p+ !p+ ;

Note that the normal domino word (. . @p+ !p+) begins with two
NOPs. This is so that after the pinball is sent on using !p+ the node that
sent the pinball downstream will immediately be looking for a new
instruction and therefore it will see the reflected pinball coming to it via
the multiport write that the downstream node performs. If the sending
node does not pay attention to its ports immediately, the reflected pinball
may not be seen, because the write performed by the downstream node
will be satisfied by the node or nodes downstream from it.

4.3.6 Domino Awakening Example

Send feedback Following is an example showing specific steps required to awaken a
series of nodes:

1. Use VentureForth to compile code to simulated nodes.
2. Specify initial data stack contents, return stack contents, A and B

register contents, and runtime start address, as shown in Listing
4.1(within the {node ... node} for a particular node).

3. Use the simulator (Section) to test the code. The simulator will ini-
tialize registers and stacks as specified above.

4. Specify a load order for a stream.

Listing 4.1 Example of the setup for a domino awakening

 8 org here =p
 1 $a3 $a4 $a5 $a6 $a7 $a8 7 >rtn
 $1000 $2000 2 >stk
 'r‐‐‐ =a
 'r‐‐‐ =b

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.3.6

VentureForth Programmer’s Guide

Inter‐node Communication 59

The stream compiler will create a stream suitable for loading through
port execution.

The stream compiler will:

• examine the RAM content of each node, and include in the stream
instructions to load only those segments of RAM that have had
code or data compiled into them.

• include instructions to initialize the stacks as specified.
• include instructions to initialize the A and B registers as specified.
• include instructions to initialize R so that the node will begin exe-

cuting at the specified address.
• include the instruction for the node to start its program or wait for a

domino to awaken it.

4.4 Boot Examples

Send feedback The example program 3boot.vf demonstrates three different ways to
boot code into an S40C18 evaluation board:

• Asynchronous serial boot code at Node 33
• Synchronous serial boot code at Node 19
• SPI boot code at Node 32

Each of the other nodes has the same code compiled for it, which simply
runs an endless loop keeping the node awake and noticeably red in the
simulator.

VentureForth has buffer space for RAM and ROM for each node in the
chip. It also has four buffers for “external nodes.” These buffers, which
reside in the host’s memory, are where bootstreams are compiled. The
current external buffer can be selected by the word <n> :xnode, where <n>
is 0, 1, 2, or 3 to denote which buffer will become active.

Listing 4.2 Example of a stream (for an S40C18)

10 >root
20 >node 21 >node 11 >node 12 >node 13 >node 14 >node 15 >node 16 >node
<init <init <init <init <init <init <init <init <init <init

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.4

VentureForth Programmer’s Guide

60 Inter‐node Communication

4.4.1 An Asynchronous Serial Stream

Send feedback The construction of an asynchronous serial stream for Node 33 (shown in
Listing 4.3) begins:

 0 :xnode 33 >root

which means that the following bootstream will be compiled into
external buffer 0. The root node, the one with the asynchronous boot
code in ROM, will be Node 33.

Listing 4.3 Example of an asynchronous boot stream

The next line says:

34 35 25 15 05 5 >branch

This specifies a branch of three nodes in the stream starting at the root,
Node 33, going to 34, 35, 25, 15, and 05. The following line says:

4 <branch

which causes the streamloader to initialize the four nodes in that branch
while coming back to the root, Node 33.

The following lines construct two more branches, ending with the
phrase:

 4 <branch

This tells the compiler to initialize the last in the branch, this time
including the root node. The root node is initialized last because it also
triggers the domino that causes each node in the stream to begin
executing as nearly simultaneously as possible. That’s the end of the
stream compilation for this boot node.

\ Compile a boot stream with Node 33 as the point of entry.
0 :xnode 33 >root

34 35 25 15 05 5 >branch
4 <branch \ Initialize Nodes 34, 35, 25, 15, and 05.

24 14 04 3 >branch
4 <branch \ Initialize Nodes 24, 14 and 04.

23 13 03 3 >branch
4 <branch \ Initialize Nodes 23, 13 and 03.

900000 4 test‐Serial \ Connect the testbed, port 4 baud 900k.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.4.1

VentureForth Programmer’s Guide

Inter‐node Communication 61

Since this is run in the simulator, a testbed is required to simulate the
actions of the outside asynchronous device that’s providing the data.
Here’s the line that initializes the asynchronous serial testbed:

 900000 4 test‐Serial \ Connect the testbed, port 4 baud 900k

The first number is the baud rate and 900000 is the fastest that the
SEAforth chips can keep up with. The second number is the internal port
number that the simulator is to use. Ports are numbered 1, 2, 3, and 4 for
Right, Down, Left, and Up: rdlu. In this case number 4, the Up port, is
being used by the simulator.

Port numbers 1 and 2, Right and Down, are never used for this purpose,
as they always have a neighbor and are never on the edge of the chip.

4.4.2 A Synchronous Serial Stream

Send feedback The synchronous stream loader uses Node 19 as the root, and External
Node 01. This part of the example defines a path similar to the
asynchronous serial path, as shown in Listing 4.4.

A synchronous serial testbed is required to simulate the actions of the
outside synchronous serial master that controls the clock for this
bootload. Here’s the line that initializes the testbed:

 4 36 360 test‐Sync \ Connect the testbed.

Listing 4.4 Example of a synchronous boot stream

The first number is the internal port number, where 1, 2, 3, and 4 are
Right, Down, Left, and Up. Note the order, rdlu (see Section 4.1). In this
case number 4, the Up port, is the port of entry. The second is the number
of simulation clocks between input bits. If you go too fast, the boot node

\ Compile a boot stream with Node 19 as the point of entry.
1 :xnode 19 >root

29 39 38 37 36 5 >branch
4 <branch \ Initialize nodes 39, 38, 37, and 36.

28 27 26 3 >branch
4 <branch \ Initialize nodes 28, 27, 26, and 29.

18 17 16 3 >branch
3 >branch \ Initialize nodes 18, 17, and 16.

09 08 07 06 4 >branch
5 <branch \ Initialize nodes 6‐9 plus the root 19.

4 36 360 test‐Sync \ Connect the testbed.

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.4.2

VentureForth Programmer’s Guide

62 Inter‐node Communication

may be able to keep up, but when the nodes in warm are awoken they
take extra time and if they are too close to the root the delay can back up
to the root and cause it to stop long enough to miss a clock, hence two
bits are dropped. The last number is how many clocks to hold off before
sending in the first bit.

4.4.3 A Flash Memory Stream Using SPI

Send feedback For the preceding two testbeds you can have more than one of either, so
long as each one is given its own external node space via :xnode. But the
SPI testbed uses slightly different technique. The SPI uses a one-time
buffer and pointers in an area that is set up by StreamFlash, which copies
and converts the external node data. Because the SPI node is a protocol
master, it sets the timing values and the testbed must respond. Therefore
no other input is required by the test-SPI setup word.

Listing 4.5 Example of an SPI/flash memory stream

Note that the testbeds are not general simulations of external hardware
but are designed knowing what the ROM will require and are only smart
enough to keep the ROM happy when starting clean from reset.

4.4.4 Summary of Stream Loader Commands

Send feedback The most commonly-used commands for constructing and managing
boot streams are given in the glossary below. Please note the highest-
level word nodePath is described in Section 2.2.

\ Compile a boot stream with Node 05 as the point of entry.
2 :xnode 32 >root

31 30 20 10 0 5 >branch
4 <branch \ Initialize Nodes 00, 10, 20, 30, and 31.

21 11 01 3 >branch
2 <branch \ Initialize Nodes 01 and 11.

22 12 02 3 >branch
5 <branch \ Initialize Nodes 02, 12, 22, 21, and 32.

StreamFlash test‐SPI \ Connect the testbed.
\ patch count for faster clocking in simulation
32 {node 0. !ok. 2! ' spi‐boot 3 ‐ org
 here 1 scrub 0 , node}

mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.4.3
mailto:feedback@intellasys.net?Subject=VFRM%20Section%204.4.4

VentureForth Programmer’s Guide

Inter‐node Communication 63

Glossary
[x] (—) H bracket‐x
Make the current external node the current node. See :xnode below.

[x'] (—) H bracket‐x‐prime
The external node next in numeric sequence after [x] becomes the
current node. See :xnode below.

:xnode (n —) H colon‐x‐node
Select a buffer on the host PC to which the stream will be compiled and
make it the current node by executing [x]. In the compiler, it is an extra
node, and as such has many of the properties of nodes such as a separate
location counter. It has much more capacity than the 64 words of RAM in
the internal nodes. Used if more that one stream is to be compiled for this
project. Otherwise 0 :xnode is used by default.

>root (n —) H to‐root
Specify Node n as the port of entry for a boot stream being compiled.
This must be a node that actually contains boot code in its ROM, and for
which you have a physical connection in hardware.

>branch (n1 n2 ... nn n —) H forward‐branch
A list of connected nodes, followed by the number of nodes in the
branch. Used to make a branching path instead of a snakelike single path.

<branch (n —) H return‐branch
Return n nodes back on the branch just specified. The nodes in this path
will be initialized at this point in the stream loader. If the root node is the
last node initialized by this command, then the stream is finished.

>node (n —) H to‐node
Connect a port pump to this node, and add it to the current path. This is
a lower-level component of >branch.

<node (—) H from‐node
Backs up one node in the stream, but does not initialize the current node,
which is unchanged.

<init (—) H from‐init
Initializes the current node before executing <node to back up one place.
This is a lower-level component of <branch.

VentureForth Programmer’s Guide

64 Inter‐node Communication

65

Appendix A S24 ROM and Library Functions

The SEAforth evaluation kits include not only the compiler and sample
applications, but also user-accessible code in the ROMs of the various
nodes and some library routines provided in source. These differ in the
different versions of the SEAforth architecture. Those available in the S24
are documented in this chapter.

A.1 S24 Overview

Send feedback The SEAforth S24 was the first production part in the SEAforth family.
Figure A.1 shows its configuration.

Figure A.1 Map of S24 nodes, showing I/O capabilities

The S24 parts do not support Extended Mode arithmetic and have a
somewhat limited set of ROM and Library functions.

RL

L

U

D

RL

U

D

R

L

U

D

L

U

D

R

U

D

L
05
SPI

D

U

R

U

L

U

R

U

L

U

RL

D

L

D D D D

R L R L

D

U

RL L

U

R

U

L

U

R

U

L

U U

U

04
GPIO

03
Asynch

02
GPIO0100

Ext Mem

11
GPIO1009080706

17
Synch1615141312

Synch

2322
GPIO

21
Asynch

20
Asynch

19
Synch18

Other I/OMemoryAnalogNo I/O

mailto:feedback@intellasys.net?Subject=VFRM%20Section%20A.1

VentureForth Programmer’s Guide

66 S24 ROM and Library Functions

A.2 Arithmetic Functions

Send feedback Generic arithmetic primitives for the SEAforth processors are described
in Section 3.1.5. This section describes some higher-level functions
available in most nodes of the S24.

A.2.1 Multiply and MAC

Send feedback The ROM in most nodes contains a signed/unsigned fixed-point
multiplication routine. It has several entry points, described in the
glossary.

Glossary
su* (n u — n’ n’*u) S24 s‐u‐star
Multiplies the signed number in S by the unsigned fixed-point multiplier
(where 1.0 is represented by $40000) in T. Since u < 1.0, the absolute value
of a product is always less than the absolute value of n. The binary point
of the product is the same as in the multiplicand n.

Only the 16 most significant bits of n are used in calculation. Two least-
significant bits of multiplicand n are just truncated. Therefore, to achieve
better accuracy, it’s advisable to shift the multiplicand two bits left before
calling su*, and then shift the product n*u in T two bits right.

mac18 (n1 n2 u’ u’ — n1 n2+n1*u’) S24 mac‐18
Performs a “multiply/accumulate” (MAC) calculation in which n1 is a
signed multiplicand, n2 is the accumulate component, and u’ is a
normalized, unsigned fixed-point multiplier (as in su* above), whose
two least-significant bits are zero.

There are several variants of the MAC function, which differ in the
number of bits in the multiplier (e.g. 18 in mac18). The smaller the
number, the faster the calculation. The following entry points are
available:

mac2 mac4 mac6 mac8 mac10 mac12 mac14 mac16

The accumulater parameter n2 is signed fixed-point, with the same scale
as u’.

The multiplier u' must be normalized, that is, its two least significant bits
must be 0. This could be achieved by masking them out with $3FFFC and
or with 2/ 2/ 2* 2* or with 2* 2*

mailto:feedback@intellasys.net?Subject=VFRM%20Section%20A.1
mailto:feedback@intellasys.net?Subject=VFRM%20Section%20A.2.1

67

A.2.2 Alternative Entry Points on Synchronous Serial Nodes

Send feedback The synchronous serial nodes 12, 17, 19 do not have enough space in
ROM to for the fast (but bulky) su* implementation. Therefore, these
nodes have a smaller but somewhat slower version of su* with no MAC
entry points.

A.3 SPI I/O Support

Send feedback The SPI boot routine for the S24 is located in node 05. This node does not
contain the code sequence used in the other boot nodes to ensure that
their inputs start out in weak pull-down mode and are stable before
being tested. Serial Data In is on pin 17, Data Out is pin 3, Clock is on pin
1 and Select is on 5. Following power-up, these pins will be driving a
weak pull-down. If connected to an SPI slave device, these pins will
remain at zero.

An SPI-controlled memory device is a slave device that receives an eight-
bit read command and a 24-bit address parameter, both sent high bits
first. During execution of the read command, the memory device emits
bytes, one bit at a time, high bits first. This output is completely
synchronous and can be paused and resumed, or in fact stopped at any
time and between any pair of bits. This means it can be treated as a bit
serial memory of arbitrary depth. The only real nod to bytes within the
part is that the address parameter refers to byte locations and command
information is organized as bytes.

The implementation of stream structure in an SPI memory device is
simply a contiguous packing of 18-bit words, high bits first. Because the
SPI memory is a simple slave device, the SPI boot routine must control
the signal lines and produce its own read command and start address
and pass them to the memory.

The SPI interface serves as a protocol master. The memory device to
which it interfaces has a limited but well-defined set of functions that
will nevertheless differ between certain devices. Because of variation in
SPI memory designs, there is no standard specification for writing such

mailto:feedback@intellasys.net?Subject=VFRM%20Section%20A.2.1
mailto:feedback@intellasys.net?Subject=VFRM%20Section%20A.2.2
mailto:feedback@intellasys.net?Subject=VFRM%20Section%20A.3

VentureForth Programmer’s Guide

68 S24 ROM and Library Functions

memories. Even if there were room in ROM for a write function, it would
not be prudent to put one there. Some applications may need to provide
a write function via RAM loaded routines. Insofar as some portions of
the ROM driver may serve a useful function for this purpose, they will
be included in this API specification.

This driver uses a set of constants, shown in Table A.1, to specify wave
form components. The names are chosen to represent three traces in a
vertical wave form. The three columns, left to right are Select, Data-out
and Clock and correspond to pins 5, 3, and 1 in that order. The character
+ is used in the name to represent a high output and ‐ to represent a low
out. Using this nomenclature, it is possible to visualize the generated
waveform by simply listing the literal names in a column in the order
they are invoked in the driver.

The lowest level output word in this specification is the wave form
composer half, which stores the wave-form constant in the IOCS and
waits for a specified delay period (one half bit time).

The ibit routine is the lowest level input function. It samples the current
value of pin 17 and shifts this value into the low order bit of the top stack
item. After 18 such inputs the top item will have been completely re-
placed, and the high order bit will be the first bit sampled. The second
stack item is neither changed nor examined. It appears in the stack
diagram because it is expected that this function will be used together
with output words where this item is reserved for the delay count. The
top stack item is actually returned as a ones-complemented value. It is
common practice when designing code interfaces for this processor, to
shift responsibility for some function elements between subroutine and
caller to improve overall size and performance. If the instruction after a
call is another call or a branch, it can easily absorb an extra opcode in
its slot 0, whereas the called function may not be able to absorb this
opcode without much greater cost. In the present case it would cost two
extra words to return a non-inverted value from both exit points,
whereas the not in front of next is completely free.

Table A.1 Constants used to specify wave form inputs

Name
Pin 5
Select

Pin 3
Data‐out

Pin 1
Clock

‐‐‐ 0 0 0

‐‐+ 0 0 1

+‐‐ 1 0 0

+‐+ 1 0 1

VentureForth Programmer’s Guide

S24 ROM and Library Functions 69

There are three words that are used to create specific types of bit-wide
output wave forms, all of which take the same two stack arguments. The
value in S is the delay count which is used but preserved, and T contains
an accumulator (which will be preserved) that may hold either an input
or output in the process of being read or written. The word select
produces the chip select sequence that is used to start or stop each
command sequence. The word rbit generates the input clock, at the end
of which a sample can be taken. It also is used to generate an output zero
bit, and is used together with the main body of obit to generate either a
zero or one output based upon the high bit of the top stack item. The
output accumulator is sampled but not shifted.

The word 8obits outputs a byte from the high bits of the top stack item
and leaves it shifted left by eight. The delay count in the second stack
item determines one half the bit delay. The word 18ibits takes only the
half-bit delay count as an input and returns above it a full 18-bit value
received, high bits first.

The highest level word in the driver API is spi‐boot. It takes a half-bit
delay value on the stack beneath the first of two command values; a
second command value is passed in on top of the return stack. A return
address is not needed or used because interpretation of the input stream
will determine the exit address. The command values are each a pair of
bytes, packed into the high 16 bits of each 18-bit item. When this function
is entered from the ROM cold start, the high byte of the first parameter
will be the standard read command $03. The next byte together with the
the two bytes from the return stack compose a 24-bit read starting address.
This address is set to zero by the cold start. Once the read command is
issued any number of contiguous bits may be read from the memory.

Program control then falls into the spi‐exec function that reads and
executes a standard sub-stream three-word header. This function also
represents the sub-stream concatenation address that is used as the
execution address for all but the last sub-stream. On entry and exit to this
function, the delay value is preserved beneath a don’t-care value. The
mode of the memory device must still be the execution of a continuous
read command. Note that the byte alignment at the beginning and end of
each sub-stream is not material. Each one begins immediately upon the
next bit after the previous one ends.

The word spi‐copy will transfer a sub-stream given that the three
arguments that describe it have already been read, and the memory
device is currently in read mode positioned at the starting bit of the
substream. The execution address must be on top of the return stack. The
transfer address must be in the A register and the transfer count is on top

VentureForth Programmer’s Guide

70 S24 ROM and Library Functions

of the stack above the half-bit delay count. Exit will be to the execution
address with trash on top of the delay count.

Glossary
spi‐boot (n cmd1 R: cmd2 — n x) A s‐p‐i‐boot
Boots a stream from the SPI. See the text above for a description of the
two command words.

spi‐exec (n x —n x) A s‐p‐i‐exec
Reads and executes a standard sub-stream three-word header. This
function also represents the sub-stream concatenation address that is
used as the execution address for all but the last sub-stream. The value n
is the baud counter.

spi‐copy (x n x —n) A s‐p‐i‐copy
Transfers a sub-stream, given that the three arguments that describe it
have already been read and the memory device is currently in read mode
positioned at the starting bit of the sub-stream. The transfer address is in
A. The baud counter is returned.

18ibits (n —n w) A 18‐eye‐bits
Reads a full 18-bit word and returns it in T. The value n is the baud
counter.

8obits (n w —n w’) A eight‐oh‐bits
Outputs a byte from the high bits of w and leaves it shifted left by eight.

obit (n w —n w) A oh‐bit
Generates either a zero or one output bit based upon the high bit of w.

rbit (n w —n w) A r‐bit
Generates the input clock, at the end of which a sample can be taken. It
also generates an output zero bit, and is used together with the main
body of obit to generate either a zero or one output based on the high bit
of the top stack item. The output accumulator is sampled but not shifted.

select (n w —n w) A select
Produces the chip select sequence used to start or stop each command
sequence.

half (n1 w n2 — n1 w) A half
Constructs a wave form given n2, which is one of the constants listed in
Table A.1, which is stored in the IOCS. The word w is preserved but not
used. The parameter n1 is a time constant representing one half bit cell.
This delay is measured by a three-nop unext loop whose nominal units
are around 6.5ns.

VentureForth Programmer’s Guide

S24 ROM and Library Functions 71

A.4 S24 Asynchronous I/O

Send feedback The asynchronous serial routines to support bootstrap or data input are
located in nodes 04, 20, and 21. All of these nodes include anti-latch-up
power-up/reset sequences to insure that their inputs start up in weak
pull-down mode and are stable long enough before being tested to
ensure that the test for boot responsibility will be accurate. All input is
half duplex and makes dedicated use of a single pin connected to bit 17
internally. The node’s bit 1 pins are reserved for an output function not
implemented in ROM. The output pins are left in weak pull-down state
at startup.

The ROM code does not support single byte input. Instead, a special
three-byte format is used, such that each byte triad contributes 18 data
bits and begins with an extra-long start bit as well as a long baud
measurement bit in the first byte. The asynchronous protocol is
described in more detail in Section 5.2.2.

Most of thelabels defined by the serial driver are not intended as external
API points because of the custom nature of the protocol supported. The
primary API is via the word ser‐exec, which takes a dummy input (i.e.,
its content is irrelevant) and returns the baud rate counter on the stack. It
reads a standard boot stream three-word header packet and then loads
the described sub-stream and branches to its entry point (with the baud
counter on top of the stack). When used to read part of a boot stream that
is a concatenation of several sub-streams ser‐exec is used as the
concatenation address contained in all but the last sub-stream.

Use of any other entry point to the serial driver implies that a custom
protocol is being designed and must therefore be carefully co-ordinated
with the outside agent that the SEAforth is communicating with.

The entry point ser‐copy may be useful to read a sub-stream without a
standard prefixed header. In this case the header information must be
passed in by the caller. The data address is expected to be in the A
register and the start address is just the return address in R at entry. The
word count is passed in as the second of three values on the stack. The
other two are ignored.

A single triad of bytes may be read using 18ibits, which requires a
dummy input value and returns a dummy value on top of the input
word on top of the baud counter. Units smaller than three bytes can only
be supported if the programmer takes responsibility for passing in an
accurate baud counter. The interested reader is directed to the stack

mailto:feedback@intellasys.net?Subject=VFRM%20Section%20A.4

VentureForth Programmer’s Guide

72 S24 ROM and Library Functions

comment for the entry point byte that is internal to 18ibits. It may be
found in the file serial.vf in the sub-directory appropriate to your chip
version (e.g., VentureForth/vf/c7Dr03/serial.vf).

Glossary
ser‐exec (x —n) A ser‐exec
Reads a standard boot stream three-word header packet and then loads
the described sub-stream and branches to its entry point (with the baud
counter on top of the stack). The returned value n is the baud counter.

ser‐copy (x n x —n) A ser‐copy
Reads an n-wordsub-stream without a standard prefixed header. Data is
stored starting at the address in A. The baud counter is returned.

18ibits (x n x —n) A 18‐eye‐bits
Reads a single 18-bit word to the address in A, returning the baud
counter.

A.5 S24 Synchronous I/O

Send feedback The synchronous serial routines to support bootstrap or data input are
located in nodes 12 17 and 19. All of these nodes include anti-latch-up
power-up/reset sequences to ensure that their inputs start up in week
pull-down mode and are stable long enough before being tested to
insure that the test for boot responsibility will be accurate. The clock is on
bit 17 and data pass on bit 1. The clock is always controlled externally but
the data direction depends upon the protocol. The ROM routines only
support the input mode. Details of the stream loader protocol are given
in Section 5.2.3.

The unit of input or output, controlled by the external clock, are 18-bit
words. The clock is bi-phase, in that data are transferred on each edge.
Consequently, the clock will always return to zero. The start of input is
signaled by the first low to high transition of the clock. No
synchronization of flow occurs between words. There is a
synchronization protocol that is specified for transitions between input
and output. Stream data must be delivered within one clock period or
risk losing two bit edges.

Only three of the internal labels defined by the serial driver are intended
as external API points. The primary API is via the word ser‐exec, which
takes and returns a dummy value. It reads a standard boot stream three-
word header packet, then loads the described sub-stream and branches

mailto:feedback@intellasys.net?Subject=VFRM%20Section%20A.5

VentureForth Programmer’s Guide

S24 ROM and Library Functions 73

to its entry point (with the output dummy value in T). When used to
read part of a boot stream that is a concatenation of several sub-streams,
ser‐exec is used as the concatenation address contained in all but the
last sub-stream.

Use of any other entry point to the serial driver implies that a custom
protocol is being designed and must therefore be carefully co-ordinated
with the outside agent that the SEAforth is communicating with. The
entry point ser‐copy may be useful to read a sub-stream without a
standard prefixed header. In this case, the header information must be
passed in by the caller. The data address is expected to be in the A
register, and the start address is just the return address in R at entry. The
word count is passed on the stack on top of a trash value.

A single word may be read using sget, which takes no input value and
returns the input word. Units smaller than a word are not supported by
this specification.

Glossary
ser‐exec (x —x) A ser‐exec
Reads a standard boot stream three-word header packet and then loads
the described sub-stream and branches to its entry point (with the baud
counter on top of the stack).

ser‐copy (x n —x) A ser‐copy
Reads an n-word sub-stream without a standard prefixed header. Data is
stored starting at the address in A. The baud counter is returned.

sget (— x) A s‐get
Reads a single 18-bit word to the stack.

VentureForth Programmer’s Guide

74 S24 ROM and Library Functions

75

Appendix B S40C18 ROM and Library Functions

The SEAforth evaluation kits include not only the compiler and sample
applications, but also user-accessible code in the ROMs of the various
nodes and some library routines provided in source. These differ in the
different versions of the SEAforth architecture. The S40C18 parts have
significantly enhanced math and I/O functions, which are documented
in this chapter.

B.1 Arithmetic Functions

Send feedback Generic arithmetic primitives for the SEAforth processors are described
in Section 3.1.5. This section describes some higher-level functions
available in most nodes of the S40C18.

Note that in dealing with double-length numbers in this section common
practice is to have the most-significant part in T and the least-significant
part in A. If both parts are on the stack, the high-order part will be in the
lower stack position (e.g. in S with the low-order part in T). This is the
opposite of the convention in Standard Forth, but saves instructions in the
SEAforth parts.

B.1.1 Arithmetic

Send feedback The ROM in most nodes contains several extended-mode arithmetic
operators, which are documented in this section.

Glossary
* (n1 n2 — n1 d1, A:d2) S40 star
Multiplies n1 and n2, giving a 35-bit product whose high-order word d1 is
in T and the low-order word d2 is in Register A.

d1 could be interpreted as the signed fixed result of a signed fixed

mailto:feedback@intellasys.net?Subject=VFRM%20Section%20B.1
mailto:feedback@intellasys.net?Subject=VFRM%20Section%20B.1.1

VentureForth Programmer’s Guide

76 S40C18 ROM and Library Functions

multiply, where n1 or n2 is a signed fixed-point fraction (where the value
1 is represented by $20000).

The low-order word of the double-length product is left in A. If you want
it, you can get it by using a@. However, you should know the high bit of
the value in A is inverted, so you need to exclusive-or A with $20000.
The high word in T is shifted left one place, so it needs to be shifted right
with 2/.

negate (n — ‐n) S40 negate
Returns the 2’s complement of a number. Library function.

u2/ (n — n’) S40 u‐two‐slash
Performs an unsigned right shift one bit. Library function.

u/mod (d1 d2 +n — nr nq) S40 u‐slash‐mod

Divides a positive double integer by a positive single integer, where:

• d1 is the high 17 bits of a 35-bit positive numerator
• d2 is the low 18 bits of a 35-bit positive numerator
• +n is a 17-bit positive denominator.
• nr is the remainder
• nq is the quotient

u/mod clears the carry bit.

~u/mod (d1 d2 ‐n — nr nq) S40 tilde‐u‐slash‐mod
This is a shorter synonym for u/mod, but you have to negate the
denominator. It divides a positive double integer by a negated positive
single integer, where:

• d1 is the high 17 bits of 35 bits positive numerator
• d2 is the low 18 bits of 35 bits positive numerator
• -n is a negated 17-bit positive denominator.
• nr is the remainder
• nq is the quotient

This word is useful where -n is a constant, as the negation takes time. ~u/
mod clears the carry bit.

‐u/mod (d1 d2 ‐n — nr nq) S40 minus‐u‐slash‐mod
Same as ~u/mod, except it does not clear the carry bit.

77

B.1.2 Mathematics Library

Send feedback The S40C18 ROM Bios includes a library of advanced math functions,
which are described in this section.

Glossary
interp (i m s —v) S40 interp
Provides a table linear interpolation function. The number of intervals or
segments in the lookup table must be a power of 2, 2n, and so the number
of table entries is 2n+1. L is the number of bits in the meaningful part of i.
Then the bit length of each segment in the table is (L - n), and the
segment parameter s is one less than this, or (L - n - 1). The value m is a
bit mask, which could be calculated from s by:

1 + ‐1 SWAP LSHIFT INVERT

We assume that the size of interpolation table is fixed, so s and m are
known at compile time and should be provided as explicit parameters
rather than being calculated at run-time. The table itself is expected to
start at location 0. The output v is given by the table value corresponding
to the start of the closest segment less than i plus the linearly interpolated
fractional distance into that segment.

Example:
0 org 1000 , 3000 , 4000 , 7000 , (and 61 more values not shown)
2987 # $FFF # 11 # interp

In this example, n is 6 (26 = 64), with only the first few values of the table
shown for simplicity. L is 18, so each segment is 12 bits long, or $F00. The
input i, $2987, is split by s and m into two parts: 2 and $987. The 2
provides an index into the table, picking up the third table value (which
is the starting value of the third segment), and the $987 calculates the
fractional distance into the third segment. Thus the output v is:

t[2]+(t[3]-t[2])*$987/$F00 = 4000+(7000-4000)*$987/$F00

rotate (x y w — x' y') S40 rotate
Performs a fast approximation of rotating the 2D vector x,y by the small
angle w. Instead of calculating (x',y') as:

mailto:feedback@intellasys.net?Subject=VFRM%20Section%20B.1.2

VentureForth Programmer’s Guide

78 S40C18 ROM and Library Functions

x' = x * cos(w) - y * sin(w)
y' = y * cos(w) + x * sin(w)

it uses:

x' = x - y * w
y' = y + x'* w

The angle w is normalized such that PI = $20000. Library function.

triangle (x — y) S40 triangle
Computes a periodic triangle function (waveform) in x to give y. Could
be used as part of a cosine implementation, and also as is. The input
parameter x is an angle, normalized such that PI = $20000. The output y
is $10000 (maximum) at x = 0, $-10000 (minimum) at x = $20000, and zero
at x = $10000 and x = $30000.

taps: (y x c R: addr — y' x') S40 taps
Used inside a colon definition to construct Finite Impulse Response filters
(FIR), Infinite Impulse Response filters (IIR), and parallel (multicore)
FIRs. The FIR filter can be done in a single node, or it can be done in a
pipeline of nodes, with more taps/coefficients in each node in the
pipeline. Since taps: is entered via a call, the address addr of the table
will be in Register R. When taps: finishes executing, it will return to the
point from which the definition containing it (e.g., fir‐kernel) was called.

Arguments to taps: are:

• y - partially convolved output sample
• x - input sample
• y' - output sample
• x' - oldest input sample from the “history.”
• addr - address of filter coefficients array (signed fixed-point num-

bers, where 1 is represented by $20000), interleaved with the history
array whose initial values are zeroes.

• c - size of filter coefficients array -1

Example 1, single core FIR:
: fir‐kernel 4 # taps: a0 , 0 , a1 , 0 , a2 , 0 , a3 , 0 , a4 , 0 ,
: fir (B:in ‐‐ out) dup dup xor @b fir‐kernel drop ;

Example 2, multicore FIR:
: long‐fir‐start dup dup xor @b fir‐kernel !b !b ;
: long‐fir‐mid @b push @b pop fir‐kernel !b !b ;
: long‐fir‐end @b push @b pop fir‐kernel drop ;

VentureForth Programmer’s Guide

S40C18 ROM and Library Functions 79

Example 3, IIR:
: lp.15.2p 4 # taps: $4038 , 0 , $8070 , 0 , $4038 , here 0 ,

$19D39 , 0 , $361E7 , 0 , (here) ,
: iir (n ‐ n') push dup dup xor pop lp.15.2p drop dup !a ;

This implements a low-pass, two pole Chebyshev filter with 0.5% ripple
and a normalized cutoff frequency of 0.15. The non-zero coefficients in
the taps: table are, in order, a0, a1, a2, b1, and b2. The additional
address compiled by taps: provides the necessary recursion for an IIR
filter.

B.2 General I/O Functions

Send feedback Figure B.2 shows the I/O ports on an S40C18 chip. Words described in
this section provide various I/O functions in the S40C18.

Glossary
bget (n — n x) S40 b‐get
Returns one byte from an RS232 port using one start bit, eight data bits,
and one stop bit. The eight data bits are packed into the unsigned eight
least-significant bits of x. The parameter n is a delay in units of ~2.5ns,
i.e., to receive the data at 31250 baud n should be 12800.

.

Figure B.2Map of S40C18 nodes, showing I/O facilities

RL

L

U

D

RL

U

D

R

L

U

D

L

U

D

R

U

D

L05

D

U

R

U

L

U

R

U

L

U

RL

D

L

D D D D

R L R L

D

U

RL L

U

R

U

L

U

R

U

L

U U

U

0403020100

151413121110
synch

252423222120

353433
asynch

32
SPI3130

R

U

D

L07

D

R L

U

D

R L

D

U

R L

U U

U

06

1716

2726

3736

R

U

D

L09

D

R L

U

D

R L

D

U

R L

U U

U

08

19
synch18

2928

3938

No I/O Analog Digital 18‐bit addr bus Memory 18‐bit data bus SerDes

mailto:feedback@intellasys.net?Subject=VFRM%20Section%20B.2

VentureForth Programmer’s Guide

80 S40C18 ROM and Library Functions

dac27 (m c p a w — m c p) S40 dack‐27
Each use of dac27 generates a triple pulse, with the following parts:

• 0 level amplitude, lasting p-w-1 time units
• m level amplitude, lasting w time units
• a level amplitude, lasting approximately 1 time unit.

p is the recurring pulse period, in units of 2.5 ns. For example, a p value
of $208D results in a 48 KHz output rate.

Usually the m level amplitude is the maximum instantaneous value that
the DAC can generate, which corresponds to an input to it of m = $1FF.

The digital value u to be converted is a 27-bit unsigned integer. Input
values w and a are calculated from u as follows:

w = u / m (integer divide)

a = u mod m

Therefore u = w*m +a, and so graphically, the area under the m level
subpulse is proportional to w*m, and the area under the a level subpulse
(a*1) represents the remainder.

In the case of m = $1FF, the 18 high order bits of u are w, and the nine low
order bits are a.

To achieve the highest possible sample rate, p should be set to u(max)/m
+ 3 (the 0 and m subpulses are always at least one time unit long, and the
a subpulse is slightly longer than one time unit.)

Preparing the w and a parameters for dac27 involves the relatively slow
u/mod operation, whose execution time depends on the numerator and
denominator. Therefore, this should be done on another node and the
results passed to the DAC node.

In cases where the resources to prepare the w and a parameters are not
available, you should use dac18.

dac18 (m c p u — m c p) S40 dack‐18

The m and p parameters are as described above for dac27, except that in
dac18, m must be set to $100 (although the code assumes that m is a
constant $100, it is a stack parameter to save memory).

The digital value to be converted, u, is an unsigned 18-bit integer.

Internally to dac18, the parameters w and a, described above in dac27, are
calculated as:

VentureForth Programmer’s Guide

S40C18 ROM and Library Functions 81

w = u/m

a = (u mod m) * c

The coefficient c is a fixed point fraction 0 < c < 1.0, where the input
range is [0, $7F] with the value 1.0 represented by $80.

The reason for the c coefficient in dac18 is that the width of the a subpulse
is slightly longer than the unit widths of the 0 and m subpulses, and for
best linearity of the DAC conversion, the a pulse amplitude should be
adjusted. Parameter c is not needed in dac27 because of the greater
resolution in the input value u.

B.3 SPI I/O Support

Send feedback The SPI boot routine for the S40C18 is located in node 32. Serial Data In is
on pin 32-17, Data Out is pin 32-3, Clock is on pin 32-1 and Select is on
32-5. Following power-up, these pins will be driving a weak pull-down.
If connected to an SPI slave device, these pins will remain at zero.

An SPI-controlled memory device is a slave device that receives an eight-
bit read command and a 24-bit address parameter, both sent high bits
first. During execution of the read command, the memory device emits
bytes, one bit at a time, high bits first. This output is completely
synchronous and can be paused and resumed, or in fact stopped at any
time and between any pair of bits. This means it can be treated as a bit
serial memory of arbitrary depth. The only real nod to bytes within the
part is that the address parameter refers to byte locations and command
information is organized as bytes.

The implementation of stream structure in an SPI memory device is
simply a contiguous packing of 18-bit words, high bits first. Because the
SPI memory is a simple slave device, the SPI boot routine must control
the signal lines and produce its own read command and start address
and pass them to the memory.

The SPI interface serves as a protocol master. The memory device to
which it interfaces has a limited but well-defined set of functions that
will nevertheless differ between certain devices. Because of variation in
SPI memory designs, there is no standard specification for writing such
memories. Even if there were room in ROM for a write function, it would
not be prudent to put one there. Some applications may need to provide
a write function via RAM loaded routines. Insofar as some portions of

mailto:feedback@intellasys.net?Subject=VFRM%20Section%20B.3

VentureForth Programmer’s Guide

82 S40C18 ROM and Library Functions

the ROM driver may serve a useful function for this purpose, they will
be included in this API specification.

This driver uses a set of constants, shown in Table B.2, to specify wave
form components. The names are chosen to represent three traces in a
vertical wave form. The three columns, left to right are Select, Data-out
and Clock and correspond to pins 5, 3, and 1 in that order. The character
+ is used in the name to represent a high output and ‐ to represent a low
out. Using this nomenclature, it is possible to visualize the generated
waveform by simply listing the literal names in a column in the order
they are invoked in the driver.

The lowest level output word in this specification is the wave form
composer half, which stores the wave-form constant in the IOCS and
waits for a specified delay period (one half bit time).

The ibit routine is the lowest level input function. It samples the current
value of pin 17 and shifts this value into the low order bit of the top stack
item. After 18 such inputs the top item will have been completely
replaced, and the high order bit will be the first bit sampled. The second
stack item is neither changed nor examined. It appears in the stack
diagram because it is expected that this function will be used together
with output words where this item is reserved for the delay count. The
top stack item is actually returned as a ones-complemented value. It is
common practice when designing code interfaces for this processor, to
shift responsibility for some function elements between subroutine and
caller to improve overall size and performance. If the instruction after a
call is another call or a branch, it can easily absorb an extra opcode in
its slot 0, whereas the called function may not be able to absorb this
opcode without much greater cost. In the present case it would cost two
extra words to return a non-inverted value from both exit points,
whereas the not in front of next is completely free.

There are three words that are used to create specific types of bit-wide
output wave forms, all of which take the same two stack arguments. The

Table B.2Constants used to specify wave form inputs

Name
Pin 5
Select

Pin 3
Data‐out

Pin 1
Clock

‐‐‐ 0 0 0

‐‐+ 0 0 1

+‐‐ 1 0 0

+‐+ 1 0 1

VentureForth Programmer’s Guide

S40C18 ROM and Library Functions 83

value in S is the delay count which is used but preserved, and T contains
an accumulator (which will be preserved) that may hold either an input
or output in the process of being read or written. The word select
produces the chip select sequence that is used to start or stop each
command sequence. The word rbit generates the input clock, at the end
of which a sample can be taken. It also is used to generate an output zero
bit, and is used together with the main body of obit to generate either a
zero or one output based upon the high bit of the top stack item. The
output accumulator is sampled but not shifted.

The word 8obits outputs a byte from the high bits of the top stack item
and leaves it shifted left by eight. The delay count in the second stack
item determines one half the bit delay. The word 18ibits takes only the
half-bit delay count as an input and returns above it a full 18-bit value
received, high bits first.

The highest level word in the driver API is spi‐boot. It takes a half-bit
delay value on the stack beneath the first of two command values; a
second command value is passed in on top of the return stack. A return
address is not needed or used because interpretation of the input stream
will determine the exit address. The command values are each a pair of
bytes, packed into the high 16 bits of each 18-bit item. When this function
is entered from the ROM cold start, the high byte of the first parameter
will be the standard read command $03. The next byte together with the
the two bytes from the return stack compose a 24-bit read starting
address. This address is set to zero by the cold start. Once the read
command is issued any number of contiguous bits may be read from the
memory.

Program control then falls into the spi‐exec function that reads and
executes a standard sub-stream three-word header. This function also
represents the sub-stream concatenation address that is used as the
execution address for all but the last sub-stream. On entry and exit to this
function, the delay value is preserved beneath a don’t-care value. The
mode of the memory device must still be the execution of a continuous
read command. Note that the byte alignment at the beginning and end of
each sub-stream is not material. Each one begins immediately upon the
next bit after the previous one ends.

The word spi‐copy will transfer a sub-stream given that the three
arguments that describe it have already been read, and the memory
device is currently in read mode positioned at the starting bit of the
substream. The execution address must be on top of the return stack. The
transfer address must be in the A register and the transfer count is on top
of the stack above the half-bit delay count. Exit will be to the execution
address with trash on top of the delay count.

VentureForth Programmer’s Guide

84 S40C18 ROM and Library Functions

Glossary
spi‐boot (n cmd1 R: cmd2 — n x) A s‐p‐i‐boot
Boots a stream from the SPI. See the text above for a description of the
two command words.

spi‐exec (n x —n x) A s‐p‐i‐exec
Reads and executes a standard sub-stream three-word header. This
function also represents the sub-stream concatenation address that is
used as the execution address for all but the last sub-stream. The value n
is the baud counter.

spi‐copy (x n x —n) A s‐p‐i‐copy
Transfers a sub-stream, given that the three arguments that describe it
have already been read and the memory device is currently in read mode
positioned at the starting bit of the sub-stream. The transfer address is in
A. The baud counter is returned.

18ibits (n —n w) A 18‐eye‐bits
Reads a full 18-bit word and returns it in T. The value n is the baud
counter.

8obits (n w —n w’) A eight‐oh‐bits
Outputs a byte from the high bits of w and leaves it shifted left by eight.

obit (n w —n w) A oh‐bit
Generates either a zero or one output bit based upon the high bit of w.

rbit (n w —n w) A r‐bit
Generates the input clock, at the end of which a sample can be taken. It
also is used to generate an output zero bit, and is used together with the
main body of obit to generate either a zero or one output based upon the
high bit of the top stack item. The output accumulator is sampled but not
shifted.

select (n w —n w) A select
Produces the chip select sequence used to start or stop each command
sequence.

half (n1 w n2 — n1 w) A half
Constructs a wave form given n2, which is one of the constants listed in
Table B.2, which is stored in the IOCS. The word w is preserved but not
used. The parameter n1 is a time constant representing one half bit cell.
This delay is measured by a two-nop unext loop whose nominal units are
around 4.9ns.

VentureForth Programmer’s Guide

S40C18 ROM and Library Functions 85

B.4 S40C18 Asynchronous I/O

Send feedback The asynchronous serial routines to support bootstrap or data input are
located in Nodes 10 and 19. All input is half duplex and makes dedicated
use of a single pin connected to bit 17 internally. The node’s bit 1 pins are
reserved for an output function not implemented in ROM. The output
pins are left in weak pull-down state at startup.

The ROM code does not support single byte input. Instead, a special
three-byte format is used, such that each byte triad contributes 18 data
bits and begins with an extra-long start bit as well as a long baud
measurement bit in the first byte. The asynchronous protocol is
described in more detail in Section 5.2.2.

Most of the internal labels defined by the serial driver are not intended as
external API points because of the custom nature of the protocol
supported. The primary API is via the word ser‐exec, which takes a
dummy input (i.e., its content is irrelevant) and returns the baud rate
counter on the stack. It reads a standard boot stream three-word header
packet and then loads the described sub-stream and branches to its entry
point (with the baud counter on top of the stack). When used to read part
of a boot stream that is a concatenation of several sub-streams ser‐exec
is used as the concatenation address contained in all but the last sub-
stream.

Use of any other entry point to the serial driver implies that a custom
protocol is being designed and must therefore be carefully coordinated
with the outside agent that the SEAforth is communicating with.

The entry point ser‐copy may be useful to read a sub-stream without a
standard prefixed header. In this case the header information must be
passed in by the caller. The data address is expected to be in the A
register and the start address is just the return address in R at entry. The
word count is passed in as the second of three values on the stack. The
other two are ignored.

A single triad of bytes may be read using 18ibits, which requires a
dummy input value and returns a dummy value on top of the input
word on top of the baud counter. Units smaller than three bytes can only
be supported if the programmer takes responsibility for passing in an
accurate baud counter. The interested reader is directed to the stack
comment for the entry point byte that is internal to 18ibits. It may be
found in the file serial.vf in the sub-directory appropriate to your chip
version (e.g., VentureForth/vf/c7Fr01/serial.vf).

mailto:feedback@intellasys.net?Subject=VFRM%20Section%20B.4

VentureForth Programmer’s Guide

86 S40C18 ROM and Library Functions

Glossary
ser‐exec (x —n) A ser‐exec
Reads a standard boot stream three-word header packet and then loads
the described sub-stream and branches to its entry point (with the baud
counter on top of the stack). The returned value n is the baud counter.

ser‐copy (x n x —n) A ser‐copy
Reads an n-word sub-stream without a standard prefixed header. Data is
stored starting at the address in A. The baud counter is returned.

18ibits (x n x —n) A 18‐eye‐bits
Reads a single 18-bit word to the address in A, returning the baud
counter.

B.5 S40C18 Synchronous I/O

Send feedback The synchronous serial routines to support bootstrap or data input are
located in node 33. The clock is on bit 17 and data pass on bit 1. The clock
is always controlled externally, but the data direction depends upon the
protocol. The ROM routines only support the input mode.

The unit of input or output, controlled by the external clock, are 18-bit
words. The clock is bi-phase, in that data are transferred on each edge.
Consequently, the clock will always return to zero. The start of input is
signaled by the first low to high transition of the clock. No
synchronization of flow occurs between words. There is a
synchronization protocol that is specified for transitions between input
and output. Stream data must be delivered within one clock period or
risk losing two bit edges.

Of the internal labels defined by the serial driver, only three are intended
as external API points. The primary API is via the word ser‐exec, which
takes a dummy value and leaves the baud rate counter calculated for the
last received word. It reads a standard boot stream three-word header
packet, then loads the described sub-stream and branches to its entry
point (with the baud counter on top the stack). When used to read part of
a boot stream that is a concatenation of several sub-streams, ser‐exec is
used as the concatenation address contained in all but the last sub-
stream.

Use of any other entry point to the serial driver implies that a custom
protocol is being designed and must therefore be carefully co-ordinated
with the outside agent that the SEAforth is communicating with. The

mailto:feedback@intellasys.net?Subject=VFRM%20Section%20B.5

VentureForth Programmer’s Guide

S40C18 ROM and Library Functions 87

entry point ser‐copy may be useful to read a sub-stream without a
standard prefixed header. In this case, the header information must be
passed in by the caller. The data address is expected to be in the A
register, and the start address is just the return address in R at entry. The
word count is passed on the stack on top of a trash value.

A single word may be read using sget, which takes no input value and
returns the input word. Units smaller than a word are not supported by
this specification.

Glossary
ser‐exec (x —x) A ser‐exec
Reads a standard boot stream three-word header packet and then loads
the described sub-stream and branches to its entry point (with the baud
counter on top of the stack).

ser‐copy (x n —x) A ser‐copy
Reads an n-word sub-stream without a standard prefixed header. Data is
stored starting at the address in A. The baud counter is returned.

sget (— x) A s‐get
Reads a single 18-bit word to the stack.

VentureForth Programmer’s Guide

88 S40C18 ROM and Library Functions

89

Appendix C: List of Commands

Send feedback This section provides summary lists of all the commands described in
this book, derived from the glossary entries. Each includes the name,
stack usage, pronunciation, and page reference. If you are using an elec-
tronic version of this book, all the command names are “hot links” to the
referenced page. Table C.1 lists all commands that execute on the host
(e.g. compiler directives, simulator commands, and other development
tools), while Table C.2 lists all target (SEAforth) commands. In the latter,
the Location column identifies the SEAforth variants in which each com-
mand appears; “A” indicates All.

Table C.3 Host commands descrbed in this book

Command Stack Location Pronunciation Page

((—) H left‐paren 42

. (—) H no‐op 43

, (n —) H comma 46

:xnode (n —) H colon‐x‐node 63

?| (—) H question‐bar 44

.adrs (addr len —) H dot‐address 23

' <name> (— addr) H tick 46

's <name> (n — addr) H <n>’s 46

[else] (—) H bracket‐else 45

[if] (t —) H bracket‐if 44

[then] (—) H bracket‐then 45

[x'] (—) H bracket‐x‐prime 63

[x] (—) H bracket‐x 63

{node (n —) H bracket‐node 42

\ (—) H back‐slash 42

(n —) H number‐sign 47

mailto:feedback@intellasys.net?Subject=VFRM%20Section%20App.C

VentureForth Programmer’s Guide

90 List of Commands

+include" <filename>" (addr len —) H plus‐include 15

<branch (n —) H return‐branch 63

<init (—) H from‐init 63

<node (—) H from‐node 63

=a (x —) H equal‐a 43

=b (addr —) H equal‐b 43

=p (addr —) H equal‐p 43

>branch (n1 n2 ... nn n —) H forward‐branch 63

>node (n —) H to‐node 63

>root (n —) H to‐root 63

>rtn (x1 x2 ... xn n —) H to‐return 43

>stk (x1 x2 ... xn n —) H to‐stack 43

| (—) H bar 44

active (n —) H active 23

dump (addr len —) H dump 23

dumpRAM (—) H dump‐RAM 23

dumpROM (—) H dump‐ROM 24

equ <name> (n —) H e‐q‐u 42

fixate (n —) H fixate 23

here (— addr) H here 47

include <filename> (—) H include 15

node} (—) H node‐bracket 42

nodePath (n1 n2 ... nn n —) H node‐path 20

nop (—) H no‐op 43

org (addr —) H org 42

power (—) H power 22

reset (—) H reset 22

setmax (n —) H set‐max 23

Table C.3 Host commands descrbed in this book

Command Stack Location Pronunciation Page

91

setstep (n —) H set‐step 23

simq (—) H sim‐q 22

simulate (or sim) (—) H sim 22

upto (n —) H up‐to 23

v.VF (— addr len) H v‐dot‐vf 15

watch1 (n —) H watch‐one 23

watch2 (n1 n2 —) H watch‐two 23

watch4 (n1 n2 n3 n4 —) H watch‐four 23

Table C.3 Host commands descrbed in this book

Command Stack Location Pronunciation Page

Table C.4 Target commands described in this book

Command Stack Location Pronunciation Page

+ (n1 n2 — n3) A plus 29

‐; (—) A minus‐semi‐colon 33

‐if (n — n) A minus‐if 36

‐u/mod (d1 d2 ‐n — nr nq) S40 minus‐u‐slash‐mod 76

‐until (n — n) A minus‐until 39

‐while (n — n) A minus‐while 39

; (R:addr —) A semi‐colon 33

;: (R:addr1 — R:addr2) A semi‐colon‐colon 33

: <name> (—) A colon 33

!a (x —) A store‐a 28

!a+ (x —) A store‐a‐plus 28

!b (x —) A store‐b 28

!p+ (x —) A store‐p‐plus 29

VentureForth Programmer’s Guide

92 List of Commands

@a (— x) A fetch‐a 27

@a+ (— x) A fetch‐a‐plus 28

@b (— x) A fetch‐b 28

@p+ (— x) A fetch‐p‐plus 28

* (n1 n2 — n1 d1, A:d2) S40 star 75

+* (n1 n2 — n1 n3) A plus‐star 30

~u/mod (d1 d2 ‐n — nr nq) S40 tilde‐u‐slash‐mod 76

10stream (—) S40 10‐stream 20

18ibits (n —n w) A 18‐eye‐bits 70

18ibits (x n x —n) A 18‐eye‐bits 72

18ibits (n —n w) A 18‐eye‐bits 84

18ibits (x n x —n) A 18‐eye‐bits 86

19stream (—) A 19‐stream 20

2* (n1 — n2) A two‐star 30

2/ (n1 — n2) A two‐slash 30

32stream (—) S40 32‐stream 20

33stream (—) S40 33‐stream 20

8obits (n w —n w’) A eight‐oh‐bits 70

8obits (n w —n w’) A eight‐oh‐bits 84

a! (x —) A a‐store 27

a@ (— x) A a‐fetch 27

again (—) A again 41

and (n1 n2 — n3) A and 29

b! (addr —) A b‐store 27

begin (—) A begin 39

bget (n — n x) S40 b‐get 79

call (— R:addr) A call 33

dac18 (m c p u — m c p) S40 dack‐18 80

Table C.4 Target commands described in this book

Command Stack Location Pronunciation Page

VentureForth Programmer’s Guide

List of Commands 93

dac27 (m c p a w — m c p) S40 dack‐27 80

drop (x1 x2 — x1) A drop 26

dup (x — x x) A dup 26

else (—) A else 36

for (n — R:n) A for 40

half (n1 w n2 — n1 w) A half 70

half (n1 w n2 — n1 w) A half 84

if (n — n) A if 36

interp (i m s —v) S40 interp 77

jump (—) A jump 35

mac18 (n1 n2 u’ u’ — n1 n2+n1*u’) S24 mac‐18 66

meanwhile (—) A meanwhile 39

negate (n — ‐n) S40 negate 76

next (R:n — R:n‐1 if non‐zero | if zero) A next 40

not (n1 — n2) A not 29

obit (n w —n w) A oh‐bit 70

obit (n w —n w) A oh‐bit 84

over (x1 x2 — x1 x2 x1) A over 26

pop (R:x — x) A pop 26

push (x — R:x) A push 26

rbit (n w —n w) A r‐bit 70

rbit (n w —n w) A r‐bit 84

repeat (—) A repeat 39

rotate (x y w — x' y') S40 rotate 77

select (n w —n w) A select 70

select (n w —n w) A select 84

ser‐copy (x n x —n) A ser‐copy 72

ser‐copy (x n —x) A ser‐copy 73

Table C.4 Target commands described in this book

Command Stack Location Pronunciation Page

VentureForth Programmer’s Guide

94 List of Commands

ser‐copy (x n x —n) A ser‐copy 86

ser‐copy (x n —x) A ser‐copy 87

ser‐exec (x —n) A ser‐exec 72

ser‐exec (x —x) A ser‐exec 73

ser‐exec (x —n) A ser‐exec 86

ser‐exec (x —x) A ser‐exec 87

sget (— x) A s‐get 73

sget (— x) A s‐get 87

spi‐boot (n cmd1 R: cmd2 — n x) A s‐p‐i‐boot 70

spi‐boot (n cmd1 R: cmd2 — n x) A s‐p‐i‐boot 84

spi‐copy (x n x —n) A s‐p‐i‐copy 70

spi‐copy (x n x —n) A s‐p‐i‐copy 84

spi‐exec (n x —n x) A s‐p‐i‐exec 70

spi‐exec (n x —n x) A s‐p‐i‐exec 84

su* (n u — n’ n’*u) S24 s‐u‐star 66

taps: (y x c R: addr — y' x') S40 taps 78

then (—) A then 37

triangle (x — y) S40 triangle 78

u/mod (d1 d2 +n — nr nq) S40 u‐slash‐mod 76

u2/ (n — n’) S40 u‐two‐slash 76

unext (R:n — R:n‐1 if non‐zero | if zero) A micro‐next 40

until (n — n) A until 39

while (n — n) A while 39

xor (n1 n2 — n3) A xor 29

Table C.4 Target commands described in this book

Command Stack Location Pronunciation Page

95

Index

A address wrapping 28
arithmetic subroutines 29
asynchronous protocol 76

B boot node 65
boot stream 63

header 63
branch

unconditional 34

C circular re‐use, stack management
strategy 25

comments 11, 41
stack 31

completion address 64
concatenation address 75, 77, 78
conditional branch 34
co‐routines 32

D data stack 9, 25, 31
initialization 42
not popped by if 35
not popped by until 37
use of host’s 44

data types 10
direction ports 48

E external node 23, 58, 61

F file extension 13
flash memory

storing code or data in 66

H hex numbers 10

I IOCS 21, 27, 33

M master file 14
memory address wrapping 28
multiport execution 52

N node
boot 65

node numbering 8
numbers

hex 10

P port execution 19, 50
port pump 52
programming with abandon 26
project file 13
project folder 13
projects 13

R registers 25
return stack 9, 25, 40

popped by zif 35

S stack
data 9
return 9

stack management strategies
circular re‐use 25
programming with abandon 26

Standard Forth 34
differences from 35

stream loader 17, 19
string parameters 15
synchronous serial I/O 78

VentureForth Programmer’s Guide

96 Using VentureForth

T transfer count 65

V Verilog hex file 66

	Table of Contents
	Chapter 1 Introduction to SEAforth Programming
	1.1 Welcome
	1.2 Definitions and Notational Conventions
	SEAforth elements
	Language elements
	Stacks
	Code listings
	Case sensitivity
	Glossary entries
	Stack effects
	Data types
	Numbers
	Comments
	Send feedback

	1.3 Development Environment

	Chapter 2 Using VentureForth
	2.1 Source Management
	2.1.1 Setting Up a Project File
	2.1.2 Loading Application Files
	2.1.3 Launching a VentureForth Application

	2.2 Compiling Code for a SEAforth Node
	2.3 Downloading Your Program To The Array
	2.3.1 Streams
	2.3.2 Stream Delivery

	2.4 Using the VentureForth Simulator

	Chapter 3 VentureForth Commands
	3.1 Primitive Commands
	3.1.1 Stack Operations
	3.1.2 Register Operations
	3.1.3 Addressing Operations
	3.1.4 Logical Operations
	3.1.5 Arithmetic Operations
	3.1.6 Extended Mode Arithmetic (S40C18 only)

	3.2 Definitions, Calls and Returns
	3.3 Program Structures
	3.3.1 A Simple Branch
	3.3.2 Conditionals
	3.3.3 Indefinite loops
	3.3.4 Finite loops
	3.3.5 Infinite loops

	3.4 Compiler Directives
	3.4.1 Comments
	3.4.2 Address Management
	3.4.3 Node Initialization
	3.4.4 Slot Management
	3.4.5 Conditional Compilation
	3.4.6 Programming Tools

	Chapter 4 Inter-node Communication
	4.1 Basic Node Geography
	4.2 Port Execution
	4.3 Building Program Loading Streams
	4.3.1 Definition of Terms
	4.3.2 Starting the Stream
	4.3.3 Nesting
	4.3.4 The Domino Awakening
	4.3.5 Summary of Steps
	4.3.6 Domino Awakening Example

	4.4 Boot Examples
	4.4.1 An Asynchronous Serial Stream
	4.4.2 A Synchronous Serial Stream
	4.4.3 A Flash Memory Stream Using SPI
	4.4.4 Summary of Stream Loader Commands

	Appendix A S24 ROM and Library Functions
	A.1 S24 Overview
	A.2 Arithmetic Functions
	A.2.1 Multiply and MAC
	A.2.2 Alternative Entry Points on Synchronous Serial Nodes

	A.3 SPI I/O Support
	A.4 S24 Asynchronous I/O
	A.5 S24 Synchronous I/O

	Appendix B S40C18 ROM and Library Functions
	B.1 Arithmetic Functions
	B.1.1 Arithmetic
	B.1.2 Mathematics Library
	Example:
	Example 1, single core FIR:
	Example 2, multicore FIR:
	Example 3, IIR:

	B.2 General I/O Functions
	B.3 SPI I/O Support
	B.4 S40C18 Asynchronous I/O
	B.5 S40C18 Synchronous I/O

	Appendix C: List of Commands
	Index

