
Appendix eForth_328 Commands

Additional note JPIN: these commands are copied from the full documentation.

Learning Forth is very much learning about the STACK (here the Data Stack).

The 3 colums in these pages:

 The name of the command / Forth Word

 What is happening on the Stack: DATA BEFORE EXECUTION -- DATA AFTER EXECUTION

 I have modified this column slightly, so the 2 dashes are mostly at the same location. Easier to read.

Try a few Words!

One of the nice features of this eForth: the 4 top locations of the stack are shown all the time:

At Startup: 0 0 0 0 ok

Store the numbers needed for the Word tried, execute the command, see what happened.

e.g. for the first line - type 10 (CR), 3 (CR), - (CR)

 and you see what happens on the Stack.

- (n1 n2 -- n3) Subtract n2 from n1 (n1-n2=n3).

' <name> (-- addr) Find <name> and leave its address.

! (n addr --) Store n to addr.

!IO (--) Initialize the serial I/O devices.

(n -- n/base) Convert next digit of n and add it to output string .

#> (n -- addr n1) Terminate numeric conversion, leaving addr and count n1.

#S (n --) Convert all significant digits in n to output string.

#TIB (-- addr) Return address of variable storing number of characters

received in terminal input buffer.

$" <string> (-- addr) Compile a string literal. Return its address at run time.

S"| (-- addr) Return address of following string literal at run time.

$,n (addr --) Build a new dictionary header using the string at addr.

$COMPILE (addr --) Compile string at addr to dictionary as a token or literal.

$INTERPRET (addr --) Interpret string a addr. Execute it of convert it to a number.

(<text>) (--) Ignore comment text.

(parse) (addr n char -- addr n delta) Scan string delimited by char. Return found string and its offset

delta.

* (n1 n2 -- n3) Signed multiply. Leave product.

*/ (n1 n2 n3 -- n4) Signed multiply and divide. Leave quotient of (n1*n2)/n3.

*/MOD (n1 n2 n3 -- n4) Signed multiply and divide. Leave remainder of (n1*n2)/n3.

, (n --) Add n to parameter field of the most recently defined word.

. (n --) Display signed number with a trailing blank.

." <text>" (--) Compile <text> message. At run-time display text message.

."! (--) Display following string literal as a text message.

.(<text>) (--) Display <text> received from the input stream.

.ID (addr --) Display name of a command at addr.

.OK (--) Display ok> message.

.R (n n1 --) Display n right justified in a field of n1 character width.

/ (n1 n2 -- quot) Signed division. Leave quotient of n1/n2.

/MOD (n1 n2 -- rem quot) Signed division. Leave quotient and remainder of n1/n2.

: <name> (--) Begin a compound command of <name>.

; (--) Terminate a compound command.

? (addr --) Display contents in addr.

?DUP (n -- n n | 0) Duplicate top of stack if it is not a 0.

?KEY (-- char T | F) Return input character and true, or a false if no input.

?RX (-- char T | F) Return input character and true, or a false if no input.

?UNIQUE (addr --) Display a "reDef" message if addr is an existing command.

@ (addr -- n) Replace addr by number fetched from addr.

[(--) Switch from compilation to interpretation.

[COMPILE]
<name>

(--) Compile the word <name> in the input stream as an token.

\ <text> (--) Ignore text till end of line.

] (--) Switch from interpretation to compilation.

^H (bot eot cur -- bot eot cur) Backspace. Backup the cursor by one character.

+ (n1 n2 -- n3) Add n1 and n2.

+! (n addr --) Add n to number at addr.

< (n1 n2 -- flag) True if n1 less than n2.

<# (--) Start numeric output conversion.

<MARK (-- addr) Push current program address on stack.

<RESOLVE (addr --) Compile addr to dictionary.

= (n1 n2 -- flag) True if n1 equals n2.

> (n1 n2 -- flag) True if n1 greater than n2.

>CHAR (n -- char) Convert n to a printable character char. Non-printable

character is converted to an underscore character.

>IN (-- addr) Return address of a variable pointing to current character

being interpreted.

>MARK (-- addr) Compile 0 to dictionary. Push its address on stack

>NAME (ca -- na) Convert a code field address to a name field address.

>R (n --) Pop top and push it on return stack.

>RESOLVE (addr --) Store address of current program word in addr.

>UPPER (addr --) Convert a count string at addr to upper case.

0< (n -- flag) True if n is negative.

0= (n -- flag) True if n is 0.

1- (n -- n-1) Decrement top.

1+ (n -- n+1) Increment top.

2- (n -- n-2) Decrement top by 2.

2! (d addr --) Store a double integer to addr.

2* (n -- 2n) Multiply top by 2.

2/ (n -- n/2) Divide top by 2.

2@ (addr -- d) Fetch a double integer from addr.

2+ (n -- n+2) Increment top by 2

2DROP (d --) Pop two numbers off stack.

2DUP (d -- d d) Duplicate a double integer on stack.

ABORT (--) Clean up stack and jump to address in 'ABORT.

'ABORT (-- addr) Return address to handle error condition.

abort" (flag --) If flag is true, display following message and ABORT.

ABS (n -- u) Return absolute value of top.

accept (addr n -- addr n1) Accept n characters to buffer at addr. Replace n with actual

count n1

AFT (--) Branch to THEN to skip a branch in FOR-NEXT loop.

AHEAD (--) Branch forward to address in next word.

ALIGNED (n -- n1) Adjust n to the word boundary.

ALLOT (+n --) Add +n bytes to parameter field of the most recently word.

AND (n1 n2 -- n3) Logical bit-wise AND.

BASE (-- addr) Contain radix for numeric conversion.

BEGIN (--) Start an indefinite loop.

BL (-- 32) Push 32 on stack.

BRANCH (flag --) Branch to address in next program word if flag is 0.

C! (n addr --) Store a byte to addr.

C@ (addr -- n) Fetch a byte from addr.

CHAR
<string>

(-- char) Push first character in the following text string.

CHARS (n char --) Send n characters char to the output device.

CMOVE (addr addr1 n --) Copy n bytes starting at addr to memory starting at addr1.

CODE
<name>

(--) Start a new primitive command.

COLD (--) Initialize FORTH system and start text interpreter.

COMPILE
<name>

(--) Retrieve address of the following command and compile it as

a token.

CONSTANT
<name>

(n --) Define a constant. At run-time, n is pushed on the stack.

CONTEXT (-- addr) Return address of a variable pointing to name field of last

word in dictionary.

COUNT (addr -- addr+1 n) Replace addr with address and count of a count string.

CP (-- addr) Return address of a variable pointing to first free space on

dictionary.

CR (--) Display a new line. Carriage return and line feed.

CREATE
<name>

(--) Define an array. At run-time, its address is left on the stack.

DECIMAL (--) Set number base to decimal.

DIAGNOSE (--) Exercise all primitive commands for debugging.

DIGIT (n -- char) Convert digit u to a character.

DNEGATE (d -- d1) Negate a double integer on stack.

do$ (-- addr) Return the address of the following compiled string.

doCON (-- n) Return contents of next program word.

doLIST (--) Start processing a new nested list.

doLIT (-- n) Push an inline literal.

doNEXT (--) Terminate a single index loop.

doVAR (-- addr) Return address of next program word.

DROP (n --) Discard top of stack.

DUMP (addr n --) Dump n bytes of memory starting from addr.

DUP (n1 -- n2) Duplicate top of stack.

ELSE (--) Terminate <true> clause, continue after the THEN.

EMIT (char --) Initialize the serial I/O devices.

ERASE (addr n --) Clear a n byte array at addr

ERROR (addr --) Display error message at addr and jump to ABORT.

EVAL (--) Interpret input stream in terminal input buffer.

'EVAL (-- addr) Return address of variable containing $INTERPRET or

$COMPILE.

EXECUTE (addr --) Execute the command at addr.

EXIT (--) Terminate execution of current compound command.

EXPECT (addr n --) Accept n characters into buffer at addr.

EXTRACT (n base -- n/base n1) Extract the least significant digit n1 from n. n is divided by

base.

FILL (addr n char --) Fill an array at address with n characters char.

find (a va -- ca na | a 0) Search dictionary at va for a string at a. Return ca and na if

succeeded, else return a and 0.

FOR (n --) Setup loop. Repeat loop until limit n is decremented to 0.

FORGET
<name>

(--) Delete command <name> and all words added afterwards.

HERE (-- addr) Address of next available dictionary location.

HLD (-- addr) Return address of a variable pointing to next converted digit.

HOLD (char --) Add character char to the number string under conversion.

IF (flag --) If flag is zero, branches forward to <false> or after THEN.

IMMEDIATE (--) Set immediate bit in name field of last command added.

KEY (-- char) Get an ASCII character from the keyboard. Does not echo.

kTAP (bot eot cur char -- bot eot

cur)
Process a control character, CR or backspace.

LAST (-- char) Get an ASCII character from the keyboard. Does not echo.

LITERAL (n --) Compile number n. At run-time, n is pushed on the stack.

M* (n1 n2 -- d) Multiply n1 and n2. Return double integer product.

M/MOD (d n -- mod quot) Divide double integer d by n1. Return remainder and quotient.

MAX (n1 n2 -- n3) n3 is the larger of n1 and n2.

MIN (n1 n2 -- n3) n3 is the smaller of n1 and n2.

MOD (n1 n2 -- mod) Signed divide. Leaver remainder of n1/n2.

NAME? (addr -- ca na | a F) Search dictionary for name at addr. Return code field address

and name field address if a command is found, else push a

false.

NAME> (na -- ca) Convert a name field address to a code field address.

NEGATE (n1 -- n2) Two's complement.

NEXT (--) Decrement index and repeat loop until index is less than 0

NOT (n1 -- n2) Bit-wise one's complement.

NUMBER? (addr -- n T | addr F) Convert a string at addr to an integer and push a true flag. If it

is not a number, push a false flag.

OR (n1 n2 -- n3) Logical bit-wise OR.

OVER (n1 n2 -- n1 n2 n1) Make copy of second item on stack.

OVERT (--) Change CONTEXT to add a new command to dictionary.

PACK$ (addr n -- addr1) Copy a string at addr with length n, to a count string at addr1.

PAD (-- addr) Return address of a scratch pad area.

PARSE (char -- addr n) Parse terminal input buffer for a string terminated by char.

Return its address and length.

PEEK (addr -- n) Fetch a byte from addr.

POKE (n addr --) Store a byte to addr.

QBRANCH (flag --) Branch to address in next word if flag is zero.

QUERY (-- addr) Leave address of a scratch area of at least 84 bytes.

QUIT (--) Return to terminal, no stack change, no message.

R@ (-- n) Copy top of return stack on stack.

R> (-- n) Pop top of return stack and push it on stack.

REPEAT (--) Unconditional backward branch to BEGIN.

ROT (n1 n2 n3 -- n2 n3 n1) Rotate third item to top. "rote"

SAME? (addr1 addr2 n -- aadr1 addr2

flag)
Compare two strings at addr1 and addr2 for n bytes. If

string1>string2, returns a positive integer. If string1<string2,

return a negative integer. If strings are identical, return a 0.

SEE <name> (--) Decompile the word <name>.

SIGN (n --) If n is negative, add a - sign to the number output string.

SPACE (--) Display a space.

str (n -- addr n1) Convert signed integer n to a numeric output string at addr,

length n1.

SPACES (n --) Display n spaces.

SWAP (n1 n2 -- n2 n1) Exchange top two stack items.

TAP (bot eot cur char -- bot eot

cur)
Accept and echo a character and bump the cursor.

THEN (--) Terminate the IF-ELSE structure.

TIB (-- addr) Push address of terminal input buffer.

'TIB (-- addr) Return address of variable pointing to terminal input buffer.

tmp (-- addr) Return address of a temporary variable.

TOKEN (-- addr) Parse next string delimited by space into a word buffer 2 bytes

above the top of dictionary.

TX! (char --) Send character c to the output device.

TYPE (addr +n --) Display a string of +n characters starting at address addr.

U. (n --) Display unsigned number with trailing blank.

U.R (n n1 --) Display unsigned number n right justified in a field of n1

characters.

U< (n1 n2 -- flag) Unsigned compare. Return true if n1<n2.

UM* (n1 n2 -- d) Unsigned multiply. Return double integer product.

UM/MOD (d n -- mod quot) Unsigned divide. Return remainder and quotient.

UM+ (n1 n2 -- d) Unsigned add. Return double integer sum.

UNTIL (flag --) Repeat <loop-body> until the flag is non-zero.

UPPER (char -- char1) Convert a character to upper case.

VARIABLE
<name>

(--) Define a variable. At run-time, <name> leaves its address.

WHILE (flag --) Repeat <loop-body> and <true> clause while the flag is non-

zero.

WITHIN (n1 n2 n3 -- flag) Return true flag if n1<=n3<n2. Else, return false flag.

WORD
<text>

(char -- addr) Get the char delimited string <text> from the input stream and

leave as a counted string at addr.

WORDS (--) Display all commands in the dictionary.

XOR (n1 n2 -- n3) Logical bit-wise exclusive OR.

