
THE BEST OF $1.00

FORTH ©OlMllEiSD©!

MEETINGS
EP

introduction

oO^ MARKETING

language

Cartoons

“"'«OsV
GRAPHICS

LEARN FORTH

JOIN FIG!

The best way to learn FORTH and keep up with Implementation and
appllcatlon Information Is to join the FORTH Interest Group. You will
recelve each Issue (six) of FORTH DImenslons as It Is publlshed and
you will be able to join a local FIG Chapter.

Membership costs $15.00 US, or $27.00 Foreign and runs concurrent
wIth the magazine year. Volume V covers from May, 1983 through April,
1984. Back Volumes I, II, III, and IV are avallable for $15.00, US or
$18.00 Foreign.

□ Yes, I want to join FIG and receive all of Volume V.
Name

Organization

Address

City

ZIPState

VISA

MASTERCARD

Expiration Date for Charge card:

Make check or money order in US Funds on US Bank, payable to FIG. All prices
include postage. California residents add sales tax except on current membership.
No purchase Orders accepted without checks.

ORDER PHONE NUMBER: 415/962-8653

San Carlos, Calif. 94070PO Box 1105FORTH INTEREST GROUP

INTRO

FÖRTH OIMENSIONS
VOLUME 1 NO. 1jüne/july 1978

EDITORIAL:
«HAT IS THE FORTH INTEREST GROUP?

The Porth Interest Group, whlch deveXoped in the fertile ground of

the conputer clubs of the San Pranclsoo Bay Area, grew in a few aontha
fron nothing to where we are now getting several letters a day from all

Uith this increaaing public interest we need to let
aee happen,

oountry.theover

people knov what we are doing and why, what we would like to
how othera oan be involved, and what we can and cannot do.

Ve are involved becauae we believe* that this language can have a

■ajor effect on the usefulness of coaputers, espeoially small ooaputera,
and we want to aee it put t<> the teat. Increasingly Software is beooming
the oritical, limiting factor in the Computer induatry. Large Software
projects are especially difficult to develop and nodify. Few are happy
with prevailing operating aystems, which are huge, hard to understand,
incoapatible with each other, and without unity of design«

The Porth language is ita own operating ayatem and text editor* It
ia Interactive, extenaible» (including user-defined data types),
structured, and recurslve. Code ia so compact that the entire ayatem
(moatly written in Porth) usually fita in 6K bytes, running stand-alone
with no other Software required, or aa a task in a oonventional operating
ayatem. One person can understand the entire Porth ayatem, ehange any
part of it, or even write a new veraion from soratoh. Run-time
effiolencies are as little as 30$ slower than atraight maohine oode, and
even leas if the system'a built-in assembler is used. When the aasembler
is not uaed, programa oan be almost completely transportable between
maohines. Any large Porth program ia really a speclal-purpose,
applioation-oriented language, greatly facilltating maintenanoe and
modification. We don't yet have conclusive data, but typioal program
development tlmes and coats seem to be a fraction of those required by
Fortran or aasembly. Porth ia especially useful for real*time,
oontrol'type applicatlona, for large projects, and for small maohines.

The Problem ia availability. Users have shown an ease of learning
after they have a ayatem available. The Porth characteristioa of postfix
notation, structured oondltionala, and data Stacks are best underatood by
use. To encourage Porth programmers, we need readily available Systems
even of. modest performance. We hope that three levels will be available:

ve rsion
file struoture whlch complles and executes from keyboard

) Introduotory(or under $20.free1. Demonstration
without
input.

PAGE 1

San Carlos, Ca. 94070FORTH INTEREST GROUP RO. Box 1105

) with RAH or tape$100.low cost ($10. to2. Personal
based flies.

Commerclal products for lab or industrial
to $2500.)($1000.

3. Professional
and Software development.

use

personal Computer user holds the key to widier
language.

Today the serlous
avallability of the
buslnessmen, programmers
commitment with the freedom to try new methods which may requlre a lot

of time and tlnkering with no definite
Practlcally everyone
personal and a Professional Interest ln Computers.

users > generally engineera«
and

These

Professional competenceCombine

guarantee of payoff.
Involved with the Forth Interest Group haa both a

VeThe Forth Interest Group is non-profit and non-commerclal.
aren't associated with any vendor, no one la raaking money from it, and

Ue are an Information clearlnghouse
distributlon of all three of the previously

Forth. We do not have a Forth ayatem for
and we don't want to get into the Software

iS best left to Companies or

committed to that goal. Naturally our critical iasue ia
Ve naed

we are all busy with other work.
wantand

mentioned levels of
distributlon

to encourage

at thla time,
or mail-order business because thls
Indlviduals

how to keep going over the long haul with volunteer energy.
cost-effective means of Information exchange.

Professional media, putting out
holding occasional meetings in the Bay

technical and Implementation
form as four installments,

all of the mail
it in the

literature,
Ve welcome your

you could helpi vhat you

At present we are writing for
this simple newsletter, and
Area. Also, we are developlog a major
manual, to be published in a Journal
avallable by subscription. While we cannot answer
indlvidually, we certalnly read it all, to answer
newsletter. While we cannot fill Orders for Software or

it is available.try and point you to where

input of information or suggestions, how
would like to see happen, and where we should go from here.

willwe
$

John JamesDave Bengel - Dave Boulton - Kim Harris
Bill Ragsdale DaveTom Olsen Vyland

PAGE 2

San Carlos, Ca. 94070RO. Box 1105FORTH INTEREST GROUP

PUZZLE

-TOWERS OF HANOI

by Peter Midnight

SCR t 14
0 (TOWERS Or HANOI
1 : PHESENCe
2 RING ♦ ce ■
3 : LINE
4 4 SWAP N 0 DO

(to

5 : 1- 1 - ;

riere are the listings of a graphic
representation of the ancient Towers
of Hanoi puzzle which is adjustable
for any CRT terminal with curser
addressing.

Copyright, 1979
(tower ring PPESENCE -> boolean)

Peter Midnight 1

wer LINE -> display_line_of_top)
DUP I PRESENCE 0« ROT ♦ SWAP LOOP DROP ;

6
7 : RAISE (size tower RAISE 1
e DUP POS SWAP LINE 1 SWAP DO
9 2DUP I BL DISPLAY 2DUP 1 1- COLOR DISPLAY
10 -l +LOOP 2DROP I
11 : LOWER I aize tower LOWER)
12 DUP POS SWAP LINE !♦ 2 Do
13 2DUP I 1- BL DISPLAY 2DUP 1 COLOR DISPLAY
14 LOOP 2DROP }
15 —>

Recently, when I got fig FORTH
runninq on my System under North Star
DOS,
program into FXDRIH as an exercise and
as a comparison between FORTH and
PASCAL,
inefficiencies but chose to translate
them more or less directly, for the
sake of conparison.

I decided to translate this

In the process I noticed some

HSG * 19

SCR I 15
0 (TOWERS OP HANOI
1 : MOVELEPT

POS 1-
DUP R 1 COLOR DISPLAY

Copyright, 1979, Peter Midnight 1
(size source_tower destiny tower MOVELEPT 1

SWAP POS 1- DO DUP RI* 1 BL DISPLAY
-1 +LOOP DROP ;

4 j HOVERIGHT (size source.tower destiny_tower MOVERICHT)
5 POS 1* SWAP POS 1* 00 DUP R 1- 1 BL DISPLAY

LOOP

< size aource_tower destiny.tower TRAVERSE)
THEN ● ;

(size Bource_tower destiny_tower NOVE)
7TERM1NAL IF 0 N 4 * COTOXY ABORT THEN

11 ROT ROT 2DUP RAISE

6 DUP R 1 COLOR DISPLAY
7 : TRAVERSE
0 2DUP > IF MOVELEPT ELSE MOVERICHT
9 : MOVE

DROP :

10

>R 20UP R> ROT TRAVERSE
12 2DUP RING * 1- CI SWAP LOWER :
13 —>

2
3

The ueSP PASCAL program is available
by requesting the Jan/Feb 1980 News
letter from Homebrew Computer Club,
P.O. Box 626, Mountain View, CA 94042.

14
15

Forth Program
SCR ● 16
0 < TOWERS OF HANOI
1 : MULTIMOV
2 4 PICK 1 >
3 >R >R SWAP 1- SWAP R> R>
4 40UP DROP ROT 1* ROT ROT
5 ROT ROT SWAP MYSELF THEN

Copyright

t;CR ● 12

, 1979, Peter Midnight)
(size source destiny spare MULTIMOV)

IF DROP MOVE ELSE

C : T'iWRRs OF HANOI Crpycighi, 1979, Peter Midnight)
1 (TranFlated for speed comparison) FORTH DEFINITIONS DCCIHAL
2 i First extend Forth to inclotie a few features of Pascal)
3 .MYSELF (In definition, this iS a recucsive use of new
4 LATEST PFA CFA , ; IMHEOIATE

I X Y GCVrOXY 1
0 MAX 15 MIN 32 ♦ EMIT

: '●i.eaRSCKEEN 1 2 EMIT ;
T. ; 2DROP OKOP DROP ;
9 r PICK SP^■> SWAP 2 ● *

Word }* : COTOXV 27 EMIT 61 EMIT
0 MAX 63 MIN 32 « EMIT6

IC : 4DUP 4 PICK 4 PICK 4 PICK 4 PICK ;
ir CCNSTAHT NHAX (maximum permisable number of rings)

1.! NMAX VARIABLE (N) N (Ni 9 : (formetly a constsnt)
0 CONSTANT HELL_FREEZES_OVEB 43 CONSTANT COLOR (+)
0 VARIABLE RING N 2 - ALLOT (array [1..NJ of bytes)

13
14
15

4DUP SWAP MYSELF
NOVE

6
7 ! NAKETOWER (tower HAKETOWER)
8 POS 4 H * 3 DO DUP I COTOXY 124 EMIT (|) LOOP DROP ;
9 : HAKEBASE (no argufnents)

10 0 N 4 ♦ GOTOXY N 6 ● 3 ♦ 0 DO 45 EMIT (-) LOOP ;
11 : HAKCRINC (tower size MAKEKING J
13 2DUP RING * 1- CI SWAP LOWER ;
13 : SETUP (no argunents) CLEARSCREEN
14 N 1+ 0 DO 1 RING 1 ♦ C! LOOP 3 0 DO I MAKETOWEH LOOP
15 ' NAKEBASE 0 N DO 0 1 HAKERINC -1 «LOOP ; — >— >

SCR f 17
0 < TOWERS OF HANOI Copyright. 1979, Peter Midnight)
1 i TOWERS (quantity TOWERS }
2 1 MAX NHAX MIN (N) I
3 SETUP K 2 0 1 BEGIN
4 OVER POS N 4 ♦ GOTOXY N 0 DO 7 EMIT 50 DELAY LOOP
5 ROT 4DUP MULTIMOV
6 HELL_FREEZES_OVER UNTIL »

SCR I 13
0 (TOWERS OF HANOI
1 : DELAY (centi

Copyright, 1979, Peter Midnight >
seconds DELAY)

0 DO 17 0 DO 127 127 ● DROP LOOP LOOP
(location POS -> coordinate 1

2
3 : POS
4 2 N ● 1*
5 : HALFOISPLAY
6 0 DO DUP EMIT LOOP

 ♦
(color

7 : <OISPLAY>
9 2DUP HALFDISPLAY
9 THEN EMIT

10 : DISPLAY

N
size HALFDISPLAY)

DROP ;
(line color size <0ISPLAY> >

ROT 3 < IF BL ELSE 124 (|)
HALFDISPLAY j

(Size pos line color DISPLAY)
SWAP >R ROT ROT OVER - R (colot size pos-size line)
GOTOXY R> (color size line) ROT ROT <01SPLAV> ;

7
8 rS
9

10 (Results: DELAY runa auch slower in Forth than in Pascal.
But the rest of the program is ovet twice as fast in Forthl1111

1212
13 Note that CLEARSCREEN and COTOXY are tecninal dependant.

NKAX should be 10 for 16x64 or 12 for 24x00 screens.)
13 —>

1414
1515

HSG I 15

Thanks to THE I/O PORT", the
Official Newsletter of the Tulsa
Computer Society, for the feature

M
article on PORIH by Art Sorski in their
April 1980 issue. Address: The Tulsa
Conputer Society, P.O. Box 1133, Tulsa,
OK 74101.

Page 32 FORTH DIMEHSIONS II/2

STYLE

D'CBARTS

Ria Harris

An alternative style of flowcharts called
But first theD-charts will be described.

The only ‘lines" in DTcharts are used to

Show nonsequential control paths (e.g.,
conditional branches, loops). in a proper
D-chart, no 1ines go up; all linea either go
down or sideways.
directed up can be (and should be) aet with
the loop Symbols,

reading of a D-chart since it a’lways Starts
at the top of a page and ends at the bottoa.

Any need for lines

This simplifies the

purpose of flowcharting will be discussed as
well as the shortcomings of traditional
flowcharting.

A flowchart should be a tool for the design
and analysis of sequential procedures which
make the control flow of a procedure clear.
With PORTH and other modern languages,
flowcharts should be optimized for the
top-down design of structured progreuns and
should help the understanding and debugging
of existing ones.
with a road map.
tion of data makes

Optimum route to some destination, but when
driving, a sequential list of .instructions
is easier to use (e.g., turn right on 3rd
Street, left on Ave. F, go 3 blocks, etc.).
Indentation of source Statements to show

control structures is helpful and is recom-
mended, but a two dimensional graphic
display of those control structures can be
Superior. A good flowchart notation should
be easy to learn, convenient to use (e.g.,
good legibility with free-hand drawn
charts), compact (minimizing off-page
lines), adaptable to specialized notations,
language, and personal style, and modifiable
with minimum redrawing of unchanged sec-
t ions.

An analogy may be made
This graphic representa-

it easy to choose an

It is customary to underline the entry nane
(or PORTH definition name) at the top of a
D-chart.

2-WAY BRAWCH SYMBOL

In PORTH, this structure takes the form:

condition IP true phrase
ELSB false phrase
THBN

Another PORTH structure which is used for
conditional compilation has nore Bneaonic
naaies:

condition IPTRUB
OTHBRWISB
ENDIP

true phrase
false phrase

The D-chart Symbol has parts for each of
these elements:Traditional flowcharting using ANSI Standard

Symbols has been so unsuccessfui at meeting
these goals that "flowchart" has become a
dirty word.

is at a lower level than any higher level
language (e.g., no loop Symbol), requires
the use- of sym^l templates for legibility,
and forces program Statements to be cranraed
inside these Symbols like captions in a
Cartoon.

This Style is not structured.
condition

false phrase true phrase

D-charts have a simplicity and power similar
to FORTH.

Edsger W.
design,
concise notation.

language.
flowcharts usually allowing twice as much
program to be displayed per page. There are
only two Symbols in the basic language;
however, like FORTH, extensions may be added
for convenience.

They are the invention of Prof.

Dijkstra, a cheunpion of top-down
structured p^ogr^unming, and clear,

They form a context-free
D-charts a're denser than ANSI

words following ENDIP (or THBN)

The "condition" !● evaluated. If It la true, che
"true phraae" la executed; ocherwlse, Che "false
phrase" la executed. The trords following ENDIP
(or THBN) are uncondlclonally executed.

If either phrase is onitted, as with
Sequential Statements are written in free
form, one below the other, and without
boxes.

condition IP true phrase THBN

a vertical line is drawn as shown:Statement
next Statement
next Statement condition

true phrase

● ● >
PAGE 30

San Carlos, Ca. 94070FORTH INTEREST GROUP RO. Box 1105

A »ore general caee isLOOP SyUBOL

loop defining syabol focbas ic BBGIN first phrase
second phrase

The
D-charts is properly structured. condition IP

AGAIN

condition
which is explaine^ better graphically
than verbally:

loop body 1

first phrase

condition

The switch synbol: second phrase

i
indicates that when the switch is

encountered, the ."condition" (on the
side line) is evaluated.

Both previous i

nested Indefinitely.
syabols may be properly

The following exaople
shows how these symbols nay be conbined.
This is the PORTH Interpreter from the
P.I.G. aodel.

1. l£ the "condition" is true, then
the sido line path is taken; if
false, then the down line is taken

(and the loop is terminated).

2. If the side line is taken, all
Statements down to the dot are

executed. The dot is the loop end
Symbol and indicates that control
is returned to the switch.

i

: INTERPRET BBGIN {■) IP HERE NUNBER
ELSE EXECÜTE
THEN

?STACK
AGAIN

INTERPRET
3. The "condition" is again evalua

ted. Its outcone night have
changed during the execution of
the loop Statement. l until null Word executed

I
search dictionary for next wordRepeat these Steps starting with

Step 1.

This Symbol teste the loop condition
before executing the loop body. However^
other loops test the condition at the
end of the loop body (e.g., DO .. LOOP
and BEGIN .. END) or in the middle of the
loop body. This loop symbol may be
extended for these other cases by adding
a test within the loop body. Consider
the PORTH loop structure

found

convert word
to integer

execute word

error

push Inceger

BEGIN loop body condition END

The loop body is always executed once,
and is repeated as long as condition is
false. The D-chart symbol for this
structure «rould be:

check stack

i
loop body

condition

● ● >

PAGE 31

FORTH INTEREST GROUP RO. Box 1105 San Carlos, Ca. 94070

The condition is uBually an Index which
selects one of the cases.

of control to a single line after the
cases are requlred by structured program-

Depending on the complexity of
this Symbol may be drawn

The rejoining

ning.
the cases,

n-WAY BRANCH SYMBOL

A structured n-way branch symbol (some-
times called a CASE Statement) may be
defined for convenience.

tionally equivalent to n
(It is func-
nested 2>way

differently.

One style for this symbolbranches).
IS:

D-charts are efficient and useful. They are

vastly Superior to traditional flowchart
style.

second case last casefirst case

;S KIM HARRIS

W^^AT IS ^
tmat in
DEClMALf

ri
B
K

TAGE 32

San Carlos, Ca. 94070RO. Box 1105FORTH INTEREST GROUP

STYLE

Techniques Tutorial

Choosing Names

a proposal in the 83 Standard to
change the value of a true boolean

from 1 to -1. If that happens, many
many programs will need to be heavi-
ly modified. What we have in essence

done in the above example is violate

our rule on naming clarity. We have
named the words TRUE and FALSE

with the how, namely 1 and 0, instead

of the what, namely TRUE and FALSE.
A much better solution, and it is ab*

solutely trivial to implement, is to
revise the code as follows:

1 CONSTANT TRUE

0 CONSTANT FALSE
tF DO-SOMETHING TRUE ELSE
DROP FALSE TKEN

This is great! First it is absolutely clear
that we are returning a boolean value,

and secondly if this was done through-
out, changing the value of TRUE would

be little more than redefining the con-
stant TRUE. The result is clearer, more
understandable, and more modifiable

Code than before, [Editor’s note: Or
consider using T and F as abbrevia-
tions. See the code for my QTF article

on page 21 of this issue.]

Let’s look at another example of
naming the what and not the how. It
is often desirable to define some words

which will set a variable to 1 or 0. TRUE

or FALSE. Which of the following
pieces of code have you written, and
which do you now think is better:

; 01 (addr —) 0 SWAP I ;

: 1! (addr —) 1 SWAP !;

: SET (addr —) TRUE SWAP !;
: RESET (addr ~) FALSE SWAP I ;

Suppose we had a variable called

ENABLE. Which of the following
phrases do you think makes more
sense:
ENABLE 0!

If you ask yourself how am I going to
disable something, you will come up
with the 0! name. If you ask yourself
what am I going to do , the answer will

be to RESET the ENABLE flag, and you

will come up with the much superior
name of RESET instead of 0!.

Always remember to ask yourself

what you are doing, not how you are

ENABLE RESETor

doing it. If you answer the what ques-

tion, you will most likely come up with

a good name.
Now let’s proceed to rule number

two in how to choose a good name.
Rule 2 is; If possible, stick to English.
Given the choice between good, or-

dinary, prosaic English, and super

sophisticated computerese, always

choose English.

Henry Laxen

This time I would like to rant and rave

about one of the most difficult aspects
of Programming in FORTH, that of

choosing good names for your defini*

tions. Besides a rational design, this is

the single most important pari of pro*
gramming in FORTH.
That’s a strong Statement, but it is

absolutely true. The names you give
your definitions can make the dif*

ference between understandable,

modifiable code, and complete gar-
bage. I will illustrate this by some
examples and some guidelines of how
to choose good names.

First a word on programming tools.
There has been a great deal of time

and effort devoted to the topic of pro
gramming tools in recent years, and
FORTH is well equipped with some of
the most sophisticated tools in the Soft
ware World. You can find code for

countless debuggers, decompilers,

cross reference Utilities, glossary
generators, and online helpers of one
form or another. These are all wonder-

ful, but rarely is the most important
FORTH development tool mentioned,

yet it is widely available and costs only

aboul $20.00. 1 am of course talking
about a good dictionary and thesaurus.

When it comes to choosing a good
name for a FORTH word, these can be

invaluable, and should be part of every
FORTH programmer’s tool kit.
Now then, rule number one in

choosing good names is: Name ihe
what, not the how. Let’s take a look

at some examples of what this means.

Every FORTH programmer, myself
included, is guilty of violating this
rule, and the primary violation is in

the area of returning booleans or

truth values. Every piece of code I
have ever seen has phrases such as the
following:
IF DO-SOMETHING 1 ELSE DROP 0 THEN

This is horrible! Furthermore there is

Besides a rationaJ design,
choosing good names is
the most important pari of
programming in FORTH.

Let’s take a look at an example of

this rule. What name would you give
to the word that takes a row and col-

umn Position off the stack and moves

the Cursor of your terminal to that
Position? Think about it for a minute

before you read the next paragraph.
If you chose a word like GOTOXY or

XYPOS may you burn in the fires of
PASCAL forever! These are total com

puterese gibberish, and should be

avoided like the plague. A terrific
word for this function would be AT,

since you are positioning the Cursor AT
the values that are on the stack. (This
name was stolen by me from Kim Har

ris who credits Chuck Moore.) Com-

pare how much more nicely the code
fragment:

5 20 AT .” Hollo” reads compared to
5 20 GOTOXY Hollo”

Let’s take another example, which

might be sacrosanct to many of you.
Suppose you wanted to define a word

which will list all of the words in a par-
ticular vocabulary on your terminal.
What would be a good name for such

a beast? If you said VLIST try again.
VLIST is another example of com

puterese gibberish. If you would like
to know what the EDITOR WORDS are

doesn’t it make more sense to type
EDITOR WORDS than EDITOR VLIST?

WORDS is the perfect name for such a

function. It names the what, namely

Confinued on page 35

FORTH Dimensions 33 Volume IV. No. 4

Choosing Names (continued from page 33)

teil me what the WORDS are, not the

how of Vocabulary LISTing.
Now let's take a look at the third and

final rule in choosing a good name.

Rule number 3 is; AH things being
equol between tvvo names, choose the
shorter one. Let’s try our rules on the

following Problems. Think of a name
for a Word that will clear the screen

of a Video terminal. Some names that

immediately spring to mind are;
ERASE, BLANK and CLEAR. Unfortunate-

ly ERASE and BLANK are already taken,

and CLEAR seems like a good choice,

but maybe we can do better. CLEAR

could apply to other things besides a
Video terminal, so think about words

that would only apply to visual things.
Consider the w'ord DARK. This is ideal

for this function. All things being

equal between CLEAR and DARK we
would choose DARK based on rule 3.

Let’s look af one more exainple. What
name should I givc the word that
decompiles other FORTH words. The

Syntax I want is
??? NAME

where ??? will decompile the FORTH
Word NAME. Think of what we are do-

ing and come up with some names.
Rule 2 excludes garbage such as
DECOMP and DIS. What is it we are do-

ing? We are exposing the definition of
NAME. Think of words that mean ex-

pose. How about the following: EXPOSE
DISCLOSE REVEAL SEE. They are all good

English words that describe what is
going on.
For a long time I used REVEAL for this

function, but then later I finally came

up with SEE, and chose it based on rule
number 3. 1 don't see any intrinsic
value of SEE over REVEAL other than it

is shorter, and hence easier to type.

Both SEE QUIT and REVEAL QUIT appeal
to me.

As a final example, and perhaps a
piece of useful code that you can use

in your applications, let's take a look
at Fig. 1. This example was motivated

by a frequent occurrence in many of
my programs, namely that of return-

ing a TRUE or FALSE result during
some kind of searching procedure.
Furthermore, this returned result must

be capable of nesting properly.

For example, suppose we wanted to

search a string for an occurrence of a
control character. If you are passed

the address and length of the string.

you might wind up with a piece of

Code as shown in Fig. 2.
It first shoves a 0 behind the address

and length on the stack. It then runs

through the string character by
character and if it finds a control

character, it throws away the current

address and the 0, replaces them with

two 1s, and leaves the loop. After the
loop, the address is thrown away, leav-

ing only the boolean result. I think this

is not only hard to follow, but tricky,
and should be avoided.

Now compare it with the piece of

Code in Fig. 3. It Starts out by saying
that the result to be returned is initial-

ly false. Next it also runs through the

string character by character, and if it

finds a control character it simply in-
dicates that the search was successful

and leaves. After the loop the address
is thrown away and the result is

returned. What could be simpler and
more readable?

Now let’s examine Fig. 1 in more
detail. The word INITIALLY is nothing

more than a push onto a stack pointed

to by the word BOOLEANS. Similarly

RESULT is nothing more than a pop
from the same stack. Notice how com-

pletely different the names are from

how they are actually implemented. If
I had named the how instead of the

what, I would have wound up with
names like >B00L and B00L>. Not

only would this violate rule number 1,

but it would be complete Computer

gibberish as well. How many of you

have implemented Stacks with names
such as >GARBAGE and GARBAGE>?

Just because something is a stack
doesn’t mean it has to have little

arrows associated with it. Stacks are

very useful data structures, and when
you use them to implement a function,
be Sure to name them according to
what the function does, not how it

does it. I have found that using the

Code in Fig. 1 has improved the

readability of my programming im-
mensely, at almost zero cost.
In conclusion, I would like to leave

you with the immortal words of the

poet John Keats, from his poem
ENDYMION. He said something like:

‘‘A good name is a joy forever.” Till
next time, may the FORTH be with

you.
©Henry Laxen 1982

□

Henry Laxen is an independent
FOR’TH Consultant based in Berkeley,
CaJi/ornia.

Scr # 1
O \ Fig 1.
1 CREATE BOOLEANS
2 : INITIALLY

B

BOOLEANS
DUP J + '

5 : RESULT
4

oolean Results
O ,

(n)
20 ALL

2 OVER +■
(and störe n)

(n

< in

)

11SEP82HHL
OT (Space far the stack)

crement Index)

6 BOOLEANS DUP
-2 ROT +■

DUP Ä ♦ 3 (get top o< stack)
(and decrement index) ;7

9 : FAIL ()
RESULT DROP

10 : SUCCEED
RESULT DROP

9

l 1

FALSE INITIALLY
()

TRUE INITIALLY
12
13
14
15

Scr tt 2
O \ Fig. 2.
1 : CONTROL?

0 ROT ROT
■. IF

LOOP DROP

Po

0-

4

11SEPB2HHLor way to Search a String
f)

O DO DUP CS» BL
2DROP 1 1 LEAVE THEN

(addr len

5
6
7 \ Fig. 3.
8 5 CONTROL'’
9 FALSE INITIALLY 0 DO DUP C3 BL

●. IF SUCCEED LEAVE THEN
LOOP DROP RESULT ;

Neat May to Search a Stri

10
1 1

ng
(addr len ■f)

12
13
14
15

Volume IV. No. 4FORTH Oimensions 35

LITERATURE

FORTH in Literature

At the FORTH Convention, October,
1979, Dan Slater gave a short report on
an experiment on communication with
killer whales. By use of a touch

operator indicating his interest and
apETOval by operating any terminal key
at the REST afber each stanza.

sensitive plate, the orca could learn
to physically equate touching a Posi
tion with a concept or object.
Interest was expressed in using the
Syntax of FORTH to define new items.
By this method a man/whale vocabulary
can be built.

scR « loa
0 < The Theory (hat Jack bullt

1 (FroB Tha Space Chlld'a Kother Cooae, Frederlck Wlnaor)

110 LOAD QUIT :

the " i
That ” ;

vrR-79o

2 : RCCITE

3 : THE
4 : THAT

(aay thla poee)

CR

Thla la "

● " Jack bullt'

5 : THIS
6 : JACK

CR

ecis)

7 : SUKMAlY

8 : FLAH
9 : KUKHERY

10 : K

11 : HAZE
12 : PHRASE

13 : BLUFF

14 ! STUFF
IS : THEORY

THE

The evening Charles Moore read a
It isFORTH poem by Ned Conklin.

loosely based on a classic of English
literature.

Sui iry
Flau'

●" Kuasery” ;
● Conitant K ;
● Erudlte Verbal Hate" ;
● '* Tum of a Plaualble Phraae"
●" Chaotlc Confualon and Bluff

Cybernetlea and Stuff" ;
Theory JACK ; —>

sxc
SIXPOICE 1

BJXIIN KfE e POCKET +! TfULL EKD
24 0 IX) BLACKBIRD I « @ PIE 41 WX
BAKE BEGIS ?0PE»ED E»D
SING DAUFTY-DISH KING I SURPRISE ;

A-21

Bill Ragsdale has submitted two
This is a familiär quotation.

SCR $ 109
0 (More Poes
1 : BUTTOK
2 : CMILO
3 : CYBERMETICS
4 ; HIDINC
S : LAY
6 ; BASED CR
7 : SAVEO
a : CLOAK CR

WFR-79DEC1S)nore.
with apologies to Browning:

●" Button to Stare ehe Hachlne" ;
Space Child vlth Brow Serene" ;

Cybernetlea and Stuff" ;
CR Kldln« " THE FLAU ;

TKAT lay ln ” THE THEORY ;
Baaed on " THE HUKMERY ;

TKAT aaved " THE SUMMARY ;
Cloaktng ” K ;

9 : TUlCK IF TRAT ELSE CR And " THEN Thlekened " THE HAZE ;
THAT ●" hung on " THE PHRASE ;

11 : COVER IF THAT covered ” ELSE CR ■" To cover " THEH BLUFF ;
CR To Bake with " THE CYBERNETICS ;

10 : HUHC

12 : HAKE
CR Vho pushed " BUTTON ;
46 EHIT 10 SPACES KEY DROP CR CR CR ;

15 : UITHOUT CR Ulthout Confualon, expoaing the Bluff" ; RECITE

13 : PUSHED
14 ; REST

LOVE
CR .
CR .

M Hew do I love thee?
Let me oount the ways.

1 BEGIN CR DUP . 1+ AGAIN

II

IIH

t

RHYME
JACK DÜP NIMBI£ BE

DUP QUICK BE
CANDLE-STICK OVER JUMP ;

Finally here is an actual, full
It is taken from "The Space

by Frederick
Winsa:, Simon and Schuster, 1958.
consists of eleven stanzas and is
almost recursive.

poem.
Childs Mother Goose II

It
SCR F 110

0 (Reclte eur pocB
1 CR CR CR THIS THEORY REST
2 THIS FUU LAY REST
3 THIS HUHHERY HIDINC UY REST
4 THIS SlMtARY BASED HIDINC UY REST
5 THIS t SAVCD BASED HIDINC LAY REST
6 THIS KAZE CLOAK SAVED BASED HIDINC UY REST
7 THIS PHRASE 1 THICX CLOAK SAVED BASED HIDINC UY REST
8 THIS BLUFF HUHC 1 TMICK CLOAK SAVEO BASED HIDINC UY REST
9 THIS STUFF 1 COVER HUNC 0 TKICK CLOAK SAVEO BASED HIDINC

10 UY REST
11 THIS BUTTON HAKE 0 COVER HUHC 0 THICK CLOAK SAVED
12 BASED HIDINC UY REST
13 THIS CHILD PUSHED CR That Bada vlth " CYBERNETICS UITHOUT
14 KUNC CR ." And, ahrtddlng " THE HAZE CLOAK CR Urecked " THE

C1S }

15 SUKNARY BASED HIDINC CR And DaBollahad ” THEORY REST

UFR-79DE

The first two screens compile
the primitives from which the poem
is recited, by loading of the last
screen.
occurs stanza by stanza with the

The Computer's recitation

FORTH DIMENSIONS II/lPage 9

MARKETING

Remember your media should be
purchased on the basis of cost per pros-
pect, not cost per 1,000.

* MESSAGE—you may be saying the right
thing to the right people, but in the wrong
way. Part of your test marketing should
be to give your advertising and sales copy
to a rank amateur and see if what they
think you are saying is the same thing you
think you are saying.

The above list is by no means all-inclusive,
but these are the areas you should Start
looking into first.

Q, Is there any way of selling my programs
other than by buying ads, etc.?—B.C.,
Walnut Creek, CA

MARKETING COLUMN

Q. I've written several programs that all my
friends think are excellent; what is the best
way to market them?—M.L., New Mexico

A. There is no universally "best" way to market
anything, and that includes Computer

Generally speaking, however.programs.
planning is your best ally. Since you have
already received some feedback (and I
assume you are certain that it is valid and
not just your friends being politely sup
portive), it makes sense that persons that
closely match the profile of your friends in
terms of need, occupation, income, etc.
would be your best prospects. Simply put,
marketing under these circumstances will
consist of finding a way to communicate
effectively and cost effectively with this A. Yes. One of the most common ways is to

have your Software merchandised through
any number of firms that specialize in this
field. Basically the way they operate is to
contract with your for ownership of your
Software and pay you a royalty on sales—
much like an author receives from a book

publisher. Naturally, the royalty is nowhere
near the amount you would receive if you
sold your Software directly to the consumer
yourself; but considering that you have no
risk and your time is free to develop
additional products which in turn can be
sold, the reduced percentage is still often
the best way to go. The point is that it isn't
how large a percentage you receive that is
important—but how much money you make.

Questions of general interest regarding the
marketing of Software will be answered in each
edition in this column.

limitations, it will not be possible to provide
private answers either by phone or mail. In the
Interests of personal privacy, questioners will
be identified by Initials only. Questions should
be addressed to;

Because of time

target group.

Q. Tve run a number of ads for Software I have

developed and while I have sold some, I just
don’t seem to make any real money for the
time I am putting in—what am I doing
wrong?—R.B., Sandusky, Ohio

A- Your Problem points up many areas that do
not occur to the amateur entrepreneur. In
the interests of brevity, I will touch on a
few of the more significant as being instruc-
tive to our readers.

* PRODUCT—in this area you may be pro-
moting a product that serves no real need
or is competing with an already estab-
lished vendor.

* PRICE—your price may be too high,
causing your potential customers to seek
other sources or do without; or, more
commonly, your price may be too low,
causing you to perform excessive labor in
selling and servicing your accounts for the
amount you are charging.

* MEDIA—you may be advertising or selling
to the wrong audience. If you have failed
to research your market and are running
ads based on who’s cheapest as opposed to
who*s reading (prospect profile), you are
unlikely to achieve any realistic sales.

MARKETING COLUMN
Editor, FORTH DIMENSIONS
PO Box 1105

San Carlos, CA 94070

Page 92FORTH DIMENSIONS m/3

LANGUAGE

STRUCTURED PROGRAMMING

BY ADDING MODULES TO FORTH
EXTERNAL. Since debugging in FORTH

proceeds from the bottom up, once you

have debugged these local routines,

you will have no further need to refer
to them from the console. They will

only be referenced from the external

part of the module. Modules can be
nested to arbitrary depth. In other

words, one module can be made local

with respect to another by defining
It between the words INTERNAL and
EXTERNAL.

Dewey Val Schorre

Structured programming is a strong

point of FORTH, yet there is one lan-
guage feature important for structured

programming which is currently absent
in FORTH. This feature is called a

module in the programming language
MODULA, and appears under other names

in other languages, such as procedure
in PASCAL,
added

routines.

It can, however, be easily

defining three one-lineby

Now let's consider matters of

The matching words INTERNAL,style.
EXTERNAL and MODULE should all appear

When modules areon the same screen.

to be nested, one should not actually
write the lower level module between

the words INTERNAL and EXTERNAL, but
should write a LOAD command that

refers to the screen containing the
lower level module. The screens of a

The names of these routines are:
and MODULE. A

a portion of a program
INTERNAL and

Definitions of constants,
routines which are

module are written
INTERNAL and

Definitions which are to

be used outside the module are

written between the words EXTERNAL

and MODULE.

INTERNAL, EXTERNAL
module is

between the words
MODULE.

variables and
local to the

between the words
EXTERNAL.

FORTH program should be organized in
a tree structure. The starting screen

which you LOAD to compile the program
is a module which LOAD's the next

level modules.

Screens are much better for struc

tured programming than the conven-
tional character string file because

they can be chained together in this
tree structured manner. You will

write a module for one program, and
when you want to use it in another

program, you don't have to edit it

into the new program or add it to a
library. All you have to do is to
reference it with a LOAD command.

One of the most common uses of

modules is to create local variables

for a routine. These variables are

defined between INTERNAL and EXTERNAL.

The routine which references them is

defined between EXTERNAL and MODULE.

Notice that this module feature is

more general than the local variable

feature of other programming lan

guages, in that several routines can
share local variables. Such sharing

is important, not so much from the
standpoint of saving space, but
because it provides a means of
communication between the routines.

There is an efficiency advantage
to the use of modules. One minor

advantage is that Compilation speed
is improved because the dictionary
that has to be searched is shorter.

The more important advantage of
saving dictionary space is not

realized with this simple Implementa
tion, which changes a link in the

dictionary. To save space, one would

have to implement a dictionary that

If you have written any local rou
tines between the words INTERNAL and

EXTERNAL, then in order to debug them,

you will have to delete the word
INTERNAL and put a ;S before the word

Page 132 FORTH DIMENSIONS II/5

CONFERENCES

was separate from the compiled code.

Moreover, this dictionary would not

be a simple push-down stack, because
the storage freed by the word MODULE
is not the last Information entered

into the dictionary.

The evening

Wednesday and Thursday, had formal
technical sessions which evolved into

bothmeetings,

quite open, informal, and productive
discussions.

be persuaded to break up to move to

the scheduled social gatherings over
wine and cheese.

The participants had to

The words needed to define modules
are as follows:

: INTERNAL (—> ADDR) CURRENT @ @ ;
: EXTERNAL (—> ADDR) HERE ;

: MODULE(ADDRl ADDR2 —>)PFA LFA ! ;

SUMMARY OF SESSIONS

The number of people presenting

papers was so great (almost 40) that

sessions were scheduled from Wednesday

afternoon all the way to Frlday after-
Topics of sessions, togethernoon.

FORML CONFERENCE
A Report on the

Second FORML Conference with their chalrmen, were:

FORTH-79 Standard

Bill RagsdaleThe Second Conference of the Forth

Modiflcation Laboratory (FORML)

held over Thanksgiving,
to 28, 1980, at the Asilomar
ference

was
November 26 Implementation Generalities

Don ColburnCon-

Grove,
California (some 120 miles south of

San Francisco).

Center, Pacific

Implementation Specifics
Dave Boulton

The weather was unseasonably beau-

as the rainy season, normally
Most

Concurrency
Terry Holmestiful,

starting in November, was late.

Conference attendees managed to find
some free time to enjoy the beach and
wooded areas.

FORTH Language Topics
George Lyons

Other Languages

Jon SpencerWith the way smoothed by a core

crew who showed up Tuesday, the major-
ity of participants arrived for lunch

Wednesday, and launched right into a
full schedule of technical sessions.

MetaFORTH

Armand Gamberra

Programming Methodology
Eric WelchThere were 65 Conference atten

dees, with enough of them bringing

family to raise the count to 96 people
at Asilomar in connection with FORML.

Applications

Hans Niewenhuijzen

The rooms were in scattered well-

landscaped buildlngs.

provlded in a central dining building,
and were generally praised. Thanks
giving noon dinner, a deluxe buffet

meal, was a special treat.

Meals were In addition, Kim Harris, the Con

ference Chairman, opened the Confer
ence with a welcome and a review of

KimFOEUiL-1, London, January 1980.
also closed the final session.

FORTH DIMENSIONS II/5 Page 133

LEITERS

DEA- CHU--LETTEHS TO TVE EDITORS

Niels Oesten

Brostykkeveh 189
DK-2650 Hvidovr©
Denmark

Daar Fig: WE CHA YOU TO CON ThE
CON OF THI- CON LET—. WE
CLA- THA- THE CON OF A WOR- IN
COM— ENG CON CON-
- TO OUR ABI TO DEC IT FRO-
THR- LET AND THE LEN

I have developed a process-simulation
program that occupiea very Httle memory
Space and yet has many of the capabilities
of commercial Simulation packagee. Thanks Niels. Good luck on establishing a

local Danish FIG Group. Anyone inter-
ested, please contact Niels as listed

above. Regarding deadlines: Copy must
be in our hands 6 weeks prior to publ-
ication, i.e., ö/15 is the deadiine for
May/June edition, etc.—ed.

I have been heavily involved in model-
ing and Simulation of automated manufac-
turlng Systems for over six years. My
ultimate objective for this work is to
develop a microprocessor-based Simulation

capability which Incorporates procesa
control structures far beyond thoee of
currently available languages. However,
the relatively extensive modeling power of
the current code would seem to offer in-

teresting market potential ln its own
right.

HOW , IN COM—
CON 15 LES- CON
WOR- CAN BE SWA WIT-— CHA-—

IT CON-

PRO THE

(COM ,

- THE SEM). CON
 CON LES- HEL- IN IDE

- OF A WOR-. IN FAC-

, THR-

— THE DEF

, AS THI- LET— OEM
LET AND A LEN— CAN LET—
EVE- A CAR REA— OF COM—
ENG—-.

Dear Fig;

I just wanted to write to teil you how
much I enjoy FORTH DIMENSIONS. Every
issue has several things of Interest to me,
and I appreciate your work in seeing that
it gets done (often a thankless task). Here
in New Hampshire, Rob Moore of SNAC
(Southern New-Hampshire Apple Corps) is
doing most of the work in implementing
and refining a version of fig-FORTH for
the Apple II. We have taken as much as
possible from page zero so that we can use
the many subroutlnes available from the

Applesoft ROM. I have been working with
our Version for some time now and am

doing a high-resolution graphics game
using FORTH and Applesoft hi-res
routines.

SIN YOU-,
ART— GOL
SPE 500—If you can provide information on

marketing such a product, please contact
me by mail or by phone (home (317) 447-
9206, Office (317) 749-2946). (TRANSLATION)

Joseph Talavage, Ph.D.
3907 Prange Or.
Lafayette, IN 47905

Dear Chuck:

WE CHALLENGE YOU TO CONSIDER
THE CONTENTS OF THIS CONFUSING
LETTER.
CONTEXT OF A WORD IN COMMON
ENGLI5H CONTRIBUTES CONSIDER-
ABLY TO OUR ABILITY TO DECIPHER
IT FROM THREE LETTERS AND THE
LENGTH.

WE CLAIM THAT THEHope prlnting your letter helps.—ed.

Dear Fig:

I am puzzled as to why I have not seen
mention in your New Products announce-
ments of fullFORTH* for PET, available

also, I belleve for Apple. It is published by
IDPC, Co., PO Box 11594, Bethlehem
Pike, Colmar, PA 18915 at $65. It is
advertised as "A full-featured FORTH
with

Interest Group Standards,

sembler, string processing capabilities,
disk virtual memory, multiple dimensioned
arrays, floating point and integer Pro
cessing." Surely, fullFORTH* is worth a
mention, if not a comprehensive rcviewi

extensions conforming to Förth
Includes as-

Gregg Williams
BYTE Publications
PO Box 372

Hancock, NH 03449
HOWEVER, IN COMPUTER PRO

GRAMS THE CONTEXT IS LESS

CONFINING (COMMONLY, WORDS CAN
BE SWAPPED WITHOUT CHANGING THE
SEMANTICS).
CONTRIBUTES CONSIOERABLY LESS
HELP IN IDENTIFYING THE DEFINITION

OF A WORD. IN FACT, AS THIS LETTER
DEMONSTRATES, THREE LETTERS AND
A LENGTH CAN LETDOWN EVEN A
CAREFUL READER OF COMMON
ENGLISH.

CONSEQUENTLY IT Thanks Gregg.
appreciate our efforts.—ed.

GIed you enjoy and

Dear Fig:

Regarding the 8080 Renovation Pro-
ject's requests for bug fixes, I would like
to counter with a request that they pro
vide a Status report in FORTH DIMEN
SIONS that includes those bugs already
reported along with any Solutions proposed
or implemented. It would also be of inter-
est to find out what the goals are for the
8080 Renovation Project and how local
FIG chapters can help.

Francis T. Chambers
ROCK HOUSE

Ballyoroy, Westport
Co. Mayo, Ireland

SINCERELY YOURS,
ARTHUR GOLOBERG
SPENCER SOOHOO

Thank you for your interest.
reviewed in Vol. öl, /13.—ed.

This was Your letter and its "translation" certainly
make the polntl—ed.

There is what I consider a bug in that
the message routine uses an absolute value
of screen 4 and 5 for getting error mes
sage information. This is fine where offset
is zero but when an offset other than zero
is used and the disk has other information

on absolute screens 4 and 5, things don't
look too good.

Dear Fig: Dear Fig:

This is our response to Chuck's
(Moore’s) cute letter.

Right now I am trying to put together
a local Danish FIG, and 1 would therefore
like you to update me with the names and
addresses of the Danish FIG members and

possible make a note in FORTH
DIMENSIONS about my intentions.

Arthur Goldberg
Spencer SooHoo
CEOARS SINAI MEDICAL CTR.

9700 Beverly Blvd.
Los Angeles, CA 90048

Robert I. Demrow
P. O. Box 158 BluSta

Andover, MA 01810

As the communication lines are rather

long and since our magazine is only bi-
monthly, please inform me on your next
deadiine as soon as possible. Thanks for the input.

Page 135FORTH DIMENSIONS III/5

LEA RN FORTH

JOIN FIG!

The best way to learn FORTH and keep up with Implementation and
appHcation Information is to join the FORTH Interest Group. You will
receive each issue (six) of FORTH Dimensions as it is published and
you wil l be able to join a local FIG Chapter.

Membership costs $15.00 US, or $27.00 Foreign and runs concurrent
with the magazine year. Volume V covers from May, 1983 through April
1984. Back Volumes I, II, III, and IV are available for $15.00, US or
$18.00 Foreign.

□ Yes, I want to join FIG and receive all of Volume V.
Name

Organization

Address

City

State ZIP

VISA

MASTERCARD

Expiration Date for Charge card;

Make check or money order in US Funds on US Bank, payable to FIG. All prices
include postage. California residents add sales tax except on current membership.
No purchase Orders accepted without checks.

ORDER PHONE NUMBER: 415/962-8653

FORTH INTEREST GROUP PO Box 1105 San Carlos, Calif. 94070

MATH

Floating Point FORTH?
By MICHAEL JESCH

Aregon Systems. Inc.

One of the first th'ngs mosl pro-

grammers find missing in FORTH is

floating point arithmetic. While most

implementers of FORTH probably

weigh the advantages and adversities

of floating point for their Version, they

usually decide to forego il for various
reasons. On the other hand. some

excellent floating point Systems have

been developed in FORTH. This arti-

de overviews some major problems

wilh floating point numbers. and
examines a very rudimentary floating

point System, written entirely in high
level FORTH.

The first major problem with float

ing point numbers is that no Computer

can work with numbers that are truly
floating point. Instead, quite often they

are stored as two separate numbers,

mantissa and exponent. This leads to

cell 1 cell 2

eeee eeee emmm mmmm mmmm mmmm mmmm mmmm

jtcaler and ligni mantissa and sign

Figure 1: Floating Point Representation, "s" is the sign bit; "e" is a

scaler, or exponent, bit; "m” is a mantissa bit.

1000 LIST

0 < Floating point MCJ tl/02/ei)
1
2 VARIABLE FPSU (floating point itatus word)
3
* FPSU l* CONSTANT FBASE < bas«)
5
6 : FRESET

0 FPSW CI ;
(ci«ar condition codcs)

7
3
3 : FINIT (initial ix« procfssor)(--)

FRESET
BASE e FBASE

10
1 1 I t
12

The greatest advantage of a
floating point math System
comes in ease of use

13
1 4
IS

the second major problem, that of

speed. Because each floating point

number is stored as two separate
numbers. each function requires that

two numbers be dealt with, costing
quite a bit in speed. One of the most

common Solutions for speed problems

is to buy a dedicated processor chip to
do all Ihe arithmetic. This is impossi-

ble on some Computers, and costly on
others.

Another problem, that of accuracy,
is a prime consideration. While float

ing point numbers can have a greater

ränge, their precision suffers a little.
The System outlined in this article has

precision to only six full decimal
digits, but the decimal point can be

moved 127 places in either direction.
This compared to a normal 32 bit dou

ble length number, where the ränge

and accuracy are +/-2,147,483,647.

The greatest advantage of a floating
point math System comes in ease of
use: there is no need for the program-

mer to worry about where the decimal
point should be. as it is handled inter-

nally by the floating point operators
themselves. This saves time program-

ming and debugging. and usually

saves some memory too,

1001 LIST

0 (Floating coint MCJ 11/02/81)
1
2 : FER (r«tarn» «um of condition co3«s >n)l

3 FPSU ca ;
4
5 1 F2E i n > < tru« if last F# was r«ro >
6 FER l AND 0- NOT ;

8 : FNE (tru« if last Ft u/as < z«ro)i - - n I

FER 2 AND 0« NOT 59
;o

< tru« if last cc«'-ation -^as o««'* zu '1 1 : FOV (- - n)

FER 4 AND 0« NOT ;12
13

(CC's 3. IS> 32> 64, and 128 ar« avai labl«)14
15

1002 LIST

0 ; Floating 00 int
HEX

MCJ ll/02/ai)
l
-j

3 : SFZ (Ft -- F« ; 2)
FER FFFE AND FPSU C
2DUP OOFF AND DO« FER OR

(s«ts
4
5

Z aecording to r* ■
(rcs«t Z)

FPSU CI ;
6
▼ : 5FN (Fl -- Ft ; N)

FER FFFD AND FPSU C
DUP 0030 AND 40 / FER OR FPSW C s

(s«ts N according to Ft)
(r«s«t N)3

9
10
11 DECIMAL
12
13

Listing continued on nexl poge14
15

Conlinued on ne.xt poge

Volume IV. No 1FORTH DimenS'ons 23

Floating Point FORTH? (continued)

1003 LIST

0 ncj< FI Olt mg poi nt
HEX

11/02/81 I

1

This floaling point System is written

in high level FORTH as an educational

tool. Once the machine language of the
target machine is understood. it
should be rewritten in low level to

capitalize on speed. One important

side effect/advantage of this approach
is transportability; It has since been

implemented on two other Computers,
under different FORTH svstems

(polyFORTH and MMSFORTH): one

witli a different CPU (an LSI-11/23).

This approach does, hovvever, cost a
lot of execution time.

As can be seen in Figure One. the

floating point number is represented
in two 16'bit cells on the stack. The

high cell (cell 1) contains the 8-bit

exponent (containing one sign bit) and
the high 8 bits of the mantissa, includ-

ing the mantissa sign, while the low
cell (cell 2) contains the lower 16 bits
of the mantissa. In this manner, the

existing double length stack and
memory operators can be used to
manipulate the values,

The error detection is handled by the

System, but the recovery is left up to
the programmer. A special condition
Code ‘register* is used to return Infor

mation about the last Operation. Cur-
rently. three of these bits are used: One
each to indicate the occurrence of a

zero value, a negative value, and most
overflow/underflow conditions. These

flags can be tested. as in a FORTH IF
. THEN structure. with vvords

defined in the package (FZE FNE and
FOV). The Word FER will return a

true if any error existed.
The scaler is used to teil where the

decima! point is. relative to the ones’

column of the mantissa, during all
math operations and output. A
positive value indicates that the radix

point is actually to the right of the

ones’ column and by how many digits,
while a negative value means to move
it to the left. It could be considered a

‘times BASE to the SCALER' type of
Suffix to a number. For addition and
subtraction. the scalers must be made

equal (the word ALIGN does this).
This means shifting the mantissa the
number of places equal to the dif-

ference of the exponents, which

2

3 i tEXPONENT (Fl n E ; ZN)
FRESET SFZ SFN

OUP FFOO AND 100 / >R

FNE IF

FFOO OR

4

5

6

. (riaevt ixponcnt)

(sit fligs)
(obtlin «xponint)

(sign «xttnd mntitsi)

8 ELSE

9 OOFF AND

THEN R> 510

11

12 DECiriAL

13

14

15

1004 LIST

0 < Floating pomt
1 HEX

MCJ 11/02/81 }

2

3 s EXPONENT

DUP 100 ●

4 FPSW C'

(n
4

5

 E Ff ;
DUP 100 /

V 2 N)

ROT <> IF

(ristor«! txDOntrt)

(txpontnt ovirflow)
6 THEN

SWAP OUP FFOO AND DUP IF

DUP FFOO <> IF

4 FPSW C

3

9 (naniissa ov«r-flow)
10 THEN

THEN DROP

OOFF AND

SFZ SFN ;

1 1
●

OR
13

14

15 DEC1.1AL

1005 LIST

0 (Floating point
(Fl :1 : F.

MCJ 11/02/61)
Z N)

2 ●EXPONENT :R
SWAP OVER DASS
.# 1 0< IF

I ABS 0 DO I LOOP

3
4
5 46 HOLD
6 ELSE
7 46 HOLD

I IF3
9 I 0 DO 48 HOLD LOOP

10 THEN
THEN R> DROP
●3 SION %> T1PE SPACE }

1 1
12
13
14 : E. V Fl -

●EXPONENT ROT (D. i TTPE
: ZN)

. E' ● 1

1006 LIST

0 < Floating DOmt MCJ 11/02/81)
I

: F* (F#1 FI2
2SWAP 9EXPONENT >R
2SWAP tEXPONENT ;R
DROP 1 «*/

Fl j

R ● R> ♦

N 2 V) < Du I t 1 P I V >
3
4
5
6 EXPONENT t

S
4 : F/ (F#1 FI2

2SWAP ^EXPONENT >R
2SWAP SEXPONENT .R
DPGP 1 SWAP M*/

P ● *

Fl j

P EXPONENI

N 2 V) < muItiDIy)
0

12
3 T 5

; 4
15

FOPTH Dimensions
24 Voluma IV. No 1

loor LIST

fiCJ U/02/81)0 I Floating 001 nt
1

causes most of the imprecision pro

blemspresent in this System. Further-
more, if one number was entered in

hexadecimal (base 16) and the other in
decimal. the scalers would be incom-

patible. To help circumvent this, a
Floating point base value is kept

separate from the FORTH base value,
and all internal scaling oprations use
this value for the number base. The

Floating point base is set to the current
FORTH base when the Floating point

System is initialized (with FINIT). It
can also be explicitly set by the pro-

grammer, but be careFul with this; iF

you output a number in a diFferent
base than you did arithmetic, the
results will not be correct.

Number formatting is left up to the

programmer, as it is in most FORTH

Systems. A double length number may
be converted to Floating point by inser-

ting the desired scaler (number scaler
lEXPONENT). To change a number

from Floating point to integer, the
Word FIX w’ill scale the mantissa to

zero. The scaler oF the top Floating

point number can be extracted with
the Word ©EXPONENT, which

leaves the double precision mantissa
below, unmodified. F. and E. are used

to output the top Floating point
number. F. prints in floating point For
mat (i.e.. 123.45). while E. prints in
scientiFic notation (i.e.. 12345 E -2).
The Four basic arithmetic Functions,

add. subtract, multiply and divide. are
called F +. F-. F* and Fl, respectively.
RSCALE and LSCALE are used to

change the position oF the least signifi-
cant digit in the mantissa. RSCALE
decrements the scaler and multiplies

the mantissa by base (changes 12.3 to

12.30). while LSCALE increments the
scaler and divides the mantissa by

base (changes 12.34 to 12.3). Be careFul
with these words. however. If the

number is dose to the limit of preci

sion, the number will probably lose

accuracy.
Other miscellaneous words are

FABS. FNEGATE. FMIN, F>. and
FMAX; these are the floating point

counterparts to ABS, NEGATE, MIN.
>, and MAX, respectively.

(m El M2 E2 Ml «2 E)●5 : ALIGN
3 BECIN

>R POT 'R
I ● IO UMILE
r I - IF

2SWAP F6ASE Ct 1 M*/ 2SUAP R> 1« -:ROT R>
I 1 * IS E2)

4
5
9

7
ELSEa

FBA5E CR 1 M«/ R> UR> <ROT3
TMEN

PEPEAT
IC
! 1

R/ DPOP s12
i 3
14
15

1003 LIST

0 (F t ei 11 ng so mt MCJ 11/02/81 I
l

FSUM I N V 2)9 : F* (Ffl Fi2
2SUAP 8EXP0NENT >R
2SWAP R> <R0T tEXPONENT
ALIGN >R

3
4
5
6 L* R> 'EXPONENT \
7
8 : F- (Ftl FI2

2SWAP lEXPONENT >R
2SWAP R> <R0T lEXPONENT
ALIGN

FDIFF ;

> R

N V Z I
9

10
11
12 D- R> 'EXPONENT \
13
14
15

1009 LIST

11/02/81 >MCJ0 (Floating point
1
2 : RSCALE < Fi -- F« t N Z V)

lEXPONENT U <R0T
FBASE CI i n*/ ROT
lEXPONENT 1

3
4
S
6

F# ; N 2 V)
<R0T

1 FBASE CI M*/ ROT
lEXPONENT j

lEXPONENT 1-
7 : LSCALE < Fi ●
8
9

10
I 1
12
13
14
15

1010 LIST

11/02/81 IMCJ0 I Floating point
l ; FIX < Fi -- Di ; V 2 N)

lEXPONENT
BECIN
●»DUP WHILE

DUP 0< IF
1* ^PCT FBASE CI 1 M*/

9

3
4

8
ELSE7

1 FBASE CI M«/<R0T
2DUP DO- IF

5 FPSU C

l -8
9

< unOtn * 10»ROT DROP 0 '.POT10
THEN

THEN
1 1
12

POT13
Listing conlinued on next pogeREPEAT 514

15

Volume IV. No 125FORTH Dimensions

GRAPHICS

GRAPHIC GRAPHICS
Bob Gotsch

California College of Arts and Crafts

Accompanying these comments are
several graphic specimens drawn on Apple
Computer using FORTH and printed on a

dot-matrix printer. They ränge from logo-
type design to experiments in geometry
and pattem. One can generate real-time
motion graphics on the Apple in which
color and action partially compensate for
the low resolution of 280 by 192 pixels.
Hardcopy, whether prinout or color photo,
isn't the final product. The Interactive,
sequenced and timed display on the screen
is the designed product, likely to displace
the medium of print on paper in the
future.

While these graphic samples could have
been programmed in other languages, 1

have found the advantages of using
FORTH are both practical and
expressive: immediate and modular ex-

perimentation with the peculiarities and
limitations of the Apple Video display, and
orchestration of complex visual effects
with self-named procedures rather than
the tedious plots and pokes to undis-
tinguished addresses. With this ease of

wielding visual ideas, FORTH might lead
to a new era of Computer graphics, even
Creative expression.

!t may remain individual and personal
expression, however, without graphics
Standards. Transportability of grahics—
generating code may be neither possible
nor desirable considering the differences
in Video display generation, alternate
character sets, shape tables, display llsts,
Interrupts, available colors, etc., between
microcomputers. Fach has some individ

ual features to exploit. Most have, how
ever, such limited memory for graphics as
to make machine-dependent economy an
overriding aspect of programming for
graphics.

'X/' >-s\x
\

Despite the rarity of FORTH graphics
thus far, I'm convinced it is an excellent

vehicle for bringing out undiscovered
graphics potential of each micro. In ad-

dition, the visibility gained by some effort
to evolve grahic ideas in FORTH would

help in both spreading and teaching the
language. Perhaps this issue of FORTH
DIMENSIONS will stimulate just such
activity.

Editor's Note: The author teils me

that Osborne/McGraw-Hül publishers have
used his patterns, generated on Apple II
using Cap'n Software FORTH, as cover
artwork for their book "Some Common
BASIC Programs”.'

^RTH DIMENSIONS III/6 Page 186

GRAPHICS

The Sheer Joy of Clipping Recursively

Bob Golsch

I’ve been wondering since I wrote the last article whether
recursion would be useful for anything eise but a study
of recursion. That other thing turned out to be “clipping,”
discarding those parts of the lines of a picture that lie Out
side the specified “viewport,” so that plotting takes place
only within the desired or useable portion of the display
device. One strategy for clipping is to perform a binary
search for the visible extremes of each line, then plot the
Segment between.
Using the Sutherland-Cohen algorithm, 4-digit “out-

codes” are assigned to the endpoints of a line according
to v/here they lie, inside or outside the viewport.

01100101 0100

VPT

V V
Of all the possible locations of a line, entirely inside

viewport, entirely outside, one end in, or Crossing view
port, every Situation is handled by trivial rejection, trivial
acceptance, or successive middle divisions of the line until
each of the segments of the line can be trivially accepted
or trivially rejected. The binary search for the intersection
with viewport boundary terminates when the segment
becomes so short that the midpoint in integer screen
Coordinates coincides with one or the other endpoint.

I have chosen to save the three values for each endpoint,
X-value, Y-value, and outcode together on the stack, with
the out-of-viewport point always topmost on the stack.
Hence a true INVIEWPORT? condition is followed by 3SWAP.
The other tests TfllVIALACCEPT?, TRIVIALREJECT?, and
COINCIDE? as well as calculation of MIDPOINT, assignment
of OUTCODE, and the graphics action PLOTLINE do just what
they say and should be understandable from the forego-
ing without listed definitions.
These are incorporated in the recursive procedure

REJECT? which uses the last outcode as true or false flag.

If true, it returns to toplevel CLIPLINE having dropped one
of the points, or at any lower level having droped off the
half of the current line that is entirely outside of the
viewport. Between MYSELFs is a test that drops the mid
point if it happened to be inside the viewport, so the search

continue onward for the other visible extreme of thecan

P 00100001 P 0000
R

VPB

10101001 1000

Inside is 0000. For an X-value to the left of (less than)
the viewport boundary. the rightmost bit is set (0001).
Below the viewport the leftmost bit is set (1001). The out
code for lower left is the logical OR of left and below
(1001), etc. A line can be trivially rejected (no plotting at
all) if it lies entirely to one side (outside) of the viewport.
An efficient test for rejection, returning a true flag, is the
logical AND of the endpoint’s outcodes. A line may be
trivially accepted and plotted as-is when outcodes for both
ends are zero.

VPT

V
P
R

line, conducted by the other MYSELF. If the actions of a
recursive procedure are planned in advance, then the
procedure-as-a-whole can be written to follow those rules,
and each recursive call can be trusted to follow those rules.
If REJECT? returns false, then CLIPLINE must plot the Seg

ment represented by the two endpoints left on the stack.
Continued

Volume IV, No. 321FORTH Dimensions

: RETURN R> DROP ;

: REJECT? (2x,2y,2oc,1x,1y,1oc

BIULiOCRAPHY

1. Foley. j.n. and \'an Dam, A., FumlnnnmJals of inlcroctiv'e Com
piler Gruphics. Addison-Wesley Publishing Company, 19Ö2.
2. Newman, W.P. and Sproull. R.P'., Principles of Interoclive Com

puter Grophie.s. McGraw-Hill. 1979.

Bob Gotsch is n graphics programmor for Time Arts,
Inc. and a teacher of graphic arts al the CüJj/ornia
College of Arts and cra/ts. He is interested in exploring
the use of Computers as aids to ortisls. He uses FOHTH-
WARE FORTH.

 2x,2y,TF)
(2xcl,2ycl,2oc,1xcl,1ycl,FF)

TRIVIALREJECT? IF 3DR0P RETURN THEN
TRIVIALACCEPT? IF RETURN THEN
INVIEWPORT?
IF 3SWAP (swap endpoints)
MIDPOINT
COINCIDE?
IF >R >R 3DR0P R> R> 0 RETURN
THEN

OUTCODE 3SWAP
MYSELF

DUP NOT IF 3SWAP 3DR0P THEN
MYSELF

3SWAP (swap ends back)
ELSE
MIDPOINT
COINCIDE?
IF >R >R 3DRDP R> R> 0 RETURN
THEN

OUTCDDE 3SWAP
MYSELF

DUP NOT IF 3SWAP 30R0P THEN
MYSELF

THEN ;

: CLIPLINE (1x,1y,2x,2y)
OUTCODE 5 ROLL 5 ROLL OUTCODE
REJECT? DUP
IF DROP 2DR0P
ELSE STRIPOUTCODES PLOTLINE

THEN :

I find it unnecessary (and often almost impossible) to
Step thru all the levels in planning a recursive procedure;
if one reads the toplevel procedure as a “user” of the
action-of-the-whole at each of its MYSELFs, or reads MYSELF

as the typical interface between two levels, that should be
enough for understanding. But hovy many levels deep
might it actually go in the search for the viewport boun-
dary? To determine the risk of return stack overflow I
simulated a high-resolution (1024 wide) graphics display
and clipped random lines from a large user space 30000
Pixel units wide. Interestingly, and reassuringly, the depth
of recursive calls NEVER exceeded 17 — staying well
within both parameter stack and return stack limits. Of
course a high-level recursive search is slow; the real effi-
ciency of this algorithm would be realized in assembler
CODE, calculating the midpoints with two additions and
two right shifts.
To illustrate uses of clipping, I have included printouts

of a decorative title for this article and a frame from an

animation sequence in which a bird and its reduced
likeness fly into and out of large and small viewports
simultaneously on the screen. □

FORTH Based File Handling System
(continued from page 9)

The ability of having several channels active allows
easy file to file transfer of information, or simultan-
eous editing of several files. However, since it would
then be possible to have several blocks with the same
block number yet on different channels, the routines
like BLOCK need some very minor alterations to pre-
vent confusion. If there is enough interest from
readers, I will discuss these changes in a future arti
cle. For now, I recommend that CHAN be ignored, and
that all file I/O be performed on the default channel
zero, and that files be opened, used and closed
sequentially.
Conclusion
A FORTH that has the file handling capability has
many advantages. The one illustrated is simple,
requiring only file string, FDB stuffer and three
verbs, Error recovery is as simple. Yet it clarifies
FORTH program usage by making source code more
modular and circumventing much code since there
is no need for documentors or auto-indexes. The
effort to add such to FORTH is trivial, due to the
modest amount of additional code. The gain is easy
file generation, be it FORTH source code, formatted
text. target compiied FORTH object code or FORTH
generated executable code. □

FORTH Dimensions 22 Volume IV, No. 3

STANDARD
FORTH Standards Corner

Towards a New Standard

Additional steps in the process involve

approval by an ANSI committee. then

perhaps other governmental or quasi
governmental committees.
Vocabuiaries

The area of greatest concern for the
next Standard is that of vocabuiaries.

FORTH-79 has a very weak vocabu-

lary structure. It was chosen as the
minimum subset of most FORTH

implementations. The only weaker

structure is the complete lack of
vocabuiaries in older versions of

FORTH. such as DECUS or OVRO

(Cal Tech) FORTH. In FORTH-79. the

search order at a given time is through

two vocabuiaries: the one specified by
CONTEXT and then the FORTH

vocabulary. Some other FORTH

Systems (like fig-FORTH) have vocab

uiaries linked together in a tree struc
ture determined when the vocabu

iaries are created. The search order is

determined by the vocabulary last
activated and its predecessors in the
tree structure down to the trunk of the

tree (which is usually FORTH). In poly
FORTH Systems the search order

when a given vocabulary name is

invoked is determined by a four

nybble (in one word) parameter given
when the vocabulary name is created.

Typically this limits the total number

of separate vocabuiaries to 7 or

possibly 15.

A dynamic method for determining

search order uses the “vocabulary

stack.” This is a concept taken from
STOIC. Each wordset is “sealed,” i.e.,

not linked to any other. A wordset is

pushed onto the vocabulary stack
from, say, the value in CONTEXT by

using a word such as VPUSH (my
favorite name for this function is

ALSO). Another word is used to drop

the top member of the vocabulary

stack, or perhaps to clear it out

entirely. Bill Ragsdale uses the word

ONLY for the latter purpose. By first

searching CONTEXT and then the
vocabulary stack we can maintain a

reasonable amount of upward com-

patibility. This is an idea advanced by
George Shaw at the last FORML
Conference.

There are many other possibilities.

Don Colburn has suggested a defining
Word like SEARCH-ORDER which

would name a word which specifies

the search order. John James has sug
gested that the invocation of a

vocabulary or wordset name would

push itself onto the vocabulary stack

if it was not currently on the

vocabulary stack. Otherwise the stack
would be truncated back to its first

appearance on the stack.

There are other designs for vocab

ulary mechanisms. Almost any of

them would be an improvement over

FORTH-79. In my opinion it is impor
tant that the next Standard have a

significant improvement in vocabu

lary structures. If you have any strong

opinions on this matter, please com-

municate them in writing to the
FORTH Standards Team.

Robert L. Smith

The Standardization Effort

The FORTH Standards Team met in

May at the National 4-H Center,

Washington, D.C. The team decided to
Work towards a new FORTH Stan

dard, tentatively called FORTH-83.

The mechanism of producing a
FORTH Standard seems to be evolv-

ing. Previously the team members met,

discussed, and then voted on a variety

of topics during a three day session.

Ambiguities and smooth wording

were worked out by a smaller group

of referees. The resulting document

was then offered for acceptance as a

whole by at least two-thirds of the

voting members. One of the problems
with this method is that the time for

deliberation is far too short for the pro-

posals and implications to be thor-

oughly understood.
The next Standard will evolve

through various working drafts. It is

intended that there be opportunities

for public examination and input. By

having more than one meeting prior
to acceptance of the next Standard,

changes and corrections can be made
which should reduce the inconsisten-

cies in the final document.

Perhaps the future Standardization

efforts should be split into separate
functions somewhat like that of the

COBOL or MUMPS Standardization
committees. At the lowest level a

language development committee

meets regularly to make changes to the

language. Their output is published as

a Journal, for consideration and testing

by implementers and users. A separate

Standards committee generates an

actual Proposed Standard document

on the time scale of five years. They

freeze the output of the language

development committee (who con-
tinue to work independently), After a

suitable voting process. this document
becomes the new Standard. Thus the

Community of users has an adequate
chance to make their views known.

FORTH Standards Team

Upcoming Working Meeting

A working session in the develop
ment of the FORTH language 1983
Standard (FORTH-83) has been
scheduied this October 3rd through
5th in Carmel Valley, California.
Space will be limited with priority for
existing Standards team members.
Accommodations will cost US$150

based on double occupancy
including meals. Room reserva-
tions require a deposit of US$50
and should be received by July 31.

This working session will attempt
to resolve the FORTH-83 Standard

working draft in anticipation of an
accepted Standard near the begin-
ning of 1983. This working draft will
be available for US$15 beginning
August 1. Comments on this work
ing draft are encouraged. Stan
dards team Sponsors additionally
receive all mailings to team
members prior to the October
meeting, including copies of sub-
mitted proposals and comments.
Standards team sponsorship is
available for US$50.

Please send Orders, deposits or
inquiries directly to the FORTH
Standards Team, P.O. Box 4545,
Mountain View, CA 94040, USA; or
telephone Mr. Roy Martens at (415)
962-8653,

Volume IV, No. 219FORTH Dimensions

STANDARD

FORTH Standards Corner

FORTH-83DO-LOOP

exit address for ihe loop on tho return

stack lo be used by LEAVE. Klaus

Schleisiek improved that by having

LEAVE be an immediate word. By using

the return stack at compile time to

Store the addresses of “fixup” loca-
tions, it is possible to avoid run-time

penalties when LEAVE does not occur

in the loop. Bill Ragsdale has sug-

gested a simple but clever way of

avoiding use of the return stack (ex*

cept as a very temporary storage
place), since Klaus’s method may not

be compatible with certain Systems.

Bill’s technique links the forward

references in a simple chain and then
resolves the chain when the LOOP or

-hLOOP is encountered at compile time.
As a result of his work, Bill has also

suggested an alternative form of LEAVE.
called 7LEAVE, which appears to be
more usefui than LEAVE itself. 7LEAVE

takes the top element from the Para

meter stack and terminates the loop if
the element is non-zero (i.e., truej. Fur-

ther details will probably be presented

at the next FORML meeting.

One interesting possibility for
augmenting the new DO is to add a

function called, say, ?D0. When the

arguments to ?D0 are equal, as in the

case 0 0 ?D0, then the loop is not

executed at all. If that appears suffi-
ciently usefui, then that function could

be incorporated in DO itself, so that an
additional word would not be needed.

It would require a slight amount of

additional time at the beginning of
each loop, and would eliminate one

(admittedly rarely used) case from DO.

tic for 16 bit numbers. Thus there is

a smooth transition between -1 and 0
and between 7FFF and 8000 hex

(32767 and -32768 decimal).

There are a variety of ways to Imple

ment the new loop, some of which re-
main to be discovered. There are two

parts to the problem. One is to find a

method of calculating the exit condi-
tions, and the other is to allow LEAVE

to work properly. The fastest method
of determining the exit conditions re-

quires that the actual value of I be

calculated by an addition or subtrac-
tion, The items stored on the return

stack (or elsewhere) are related to the
limit and the index. but are not

necessarily the same. For machines

with a testable overflow bit the sug

gested technique is to modify the limit
and initial index so that the transition

will lie between 7FFF and 8000 hex.
The overflow bit is set whenever an

addition causes the result to cross the

7FFF to 8000 boundary. Initially put
limit’ <— limit + 8000
r <— init - limit’

Robert L. Smith

A new form of the DO-LOOP has been

accepted for the next FORTH Stan

dard, tentatively called FORTH-83.

The new DO w'ill generally work as you

would expect for indices which repre-
sent either addresses or signed or un-
signed arithmetic values. The index I

covers a complete 65K ränge, the same
as in FORTH-79 but twice as much as

in fig-FORTH or poly-FORTH. An ad

ditional advantage occurs with -l-LOOP;

the sign of the increment can change

within the loop without necessarily
causing an exit condition. The speed
of the new form is fester than most

previous loops unless I occurs fre-

quently. A feature of the new loop is
that when LEAVE is executed, control

is passed lo the end of the loop without
intervening calculations.

The price to be paid for the general
form of the new loop is that certain
“side-effects” of the old form are miss-

ing. Consider the simple definition;
; TEST 0 DO I . LOOP ;
Under the old form, -5 TEST would

execute exactly once. In the new form,
the loop continues until the index I

Grosses the boundary between limit
and limit-1. In the above case, -5 TEST
would print out:
0 1 2 ... 32767 -32768 -32767 ...
-8 -7 -6

To print only one value would require
1 TEST. For another example, consider
the following function:
: CLEAR DO 0 I C! LOOP ;

Suppose that our base is hexadecimal

and we wish to clear memory between
2000 and EFFF. With the new form of

LOOP. we could simply type:
FOQO 2000 CLEAR

and the indicated area would be

cleared. The routine would only clear

one byte with the FORTH-79 or the fig-
FORTH Version of LOOP.

The new loop considers that the
index 1 lies on a “number circle” based

on the usual 2’s complement arithme-

To calculate I, note that
I = r iimir
At -hLOOP,
I’ <— r -I- increment
Then check for overflow. If the

overflow bit is set, continue to loop,
eise exit from the loop.
For machines without an overflow

bit, such as the 8080, let
Ilmir < — limit

Init - limit’I <—

For LOOP, merely increment I’ by 1 and
branch back if the result is non-zero.

For -hLOOP, one has to examine the

combination of the carry bit and the
sign bit of the increment. Klaus

Schleisiek suggests the following: use
the RAR instruction to shift the carry
bit into the accumulator, then use XRA

with the increment value. Only the
sign bit of the result is of interest. If

the result is positive, continue to loop.
If the result is negative, terminale the
loop.

There have been various suggestions
for implementing LEAVE. Bob Berkey’s

original Suggestion involves having
the run-time operator for DO place the

□

fieprinled from Starting FORTH, by Leo ßrodie. permission
of Prenlice-Ha/1, /nc.

FORTH Dimensions 24 Volume IV, No, 3

MEETINGS

Fig Chapters
U.S. FOREIGN
● ARIZONA

Phoenix Chapter
Dennis L. Wilson, Samaritan Health
Services, 2121 E. Magnolia, Phoenix,
AZ, 602/257-6875

● OKLAHOMA

Tulsa Chapter
Monthly, 3rd Tues., 7:30 p.m., The
Computer Store. 4343 So. Peoria,
Tulsa, OK. Call Bob Giles,
918/599-9304 or Art Gorski,
918/743-0113

● AUSTRAÜA

Australia Chapter
Contact Lance Collins, 65 Martin Rd.
Gien Iris, Victoria 3146, or phone
(03) 292600

● CANADA

Southern Ontario Chapter
Contact Dr. N. Solntseff, Unit for
Computer Science, McMaster
University, Hamilton, Ontario L8S
4K1, 416/525-9140 x2065

● CALIFORNIA

Los Angeles Chapter
Monthly, 4th Sat., 11 a.m., Allstate
Savings, 8800 So. Sepulveda Blvd.,
L.A. Philip Wasson 213/649-1428

Northern California Chapter
Monthly, 4th Sat., 1 p.m., FORMT
Workshop at 10 a.m. Palo Alto area.
Contact FIG Hotline 415/962-8653

Orange County Chapter
Monthly, 4th Wed., 12 noon,
Fullerton Savings, 18020 Brookhurst,
Fountain Valley. 714/523-4202

San Diego Chapter
Weekly, Thurs., 12 noon. Call Guy
Kelly, 714/268-3100 x4784

● OHIO

Dayton Chapter
Monthly, 2nd Tues., Datalink
Computer Center, 4920 Airway Road,
Dayton, OH 45431. Call Gary Ganger,
(513) 849-1483.

Quebec Chapter
Call Gilles Paillard, 418/871-1960 or
643-2561

● OREGON

Portland Chapter
Call Timothy Huang, 9529 Northeast
Gertz Circle, Portland, OR 97211,
503/289-9135

● ENGLAND

English Chapter
Write fo FORTH Interest Group, 38
Worsley Rd., Frimley, Camberley,
Surrey, GU16 SAU, England

● PENNSYLVANIA

Philadelphia Chapter
Call Barry Greebel, Continental Data
Systems, 1 Bala Plaza, Suite 212, Bala
Cynwid, PA 19004

● JAPAN

Japanese Chapter
Contact Masa Tasaki, Baba-Bldg. 8F,
3-23-8 Nishi-Shimbashi, Minato-ku,
Tokyo, 105 Japan

● MASSACHUSETTS

Boston Chapter
Monthly, Ist Wed., 7 p.m. Mitre
Corp. Cafeteria, Bedford, MA. Bob
Demrow, 617/688-5661 after 5 p.m.

● TEXAS

Austin Chapter
Call John Hastings, 512/327-5864

Dallas/Ft. Worth Chapter
Monthly, 4th Thurs. 7 p.m., Software
Automation, 1005 Business Parkway,
Richardson, TX. Call Marvin Eider,
214/231-9142 or Bill Drissel,
214/264-9680

● NETHERLANDS
HCC-FORTH Interest
Group Chapter
Contact F.J. Meijer, Digicos, Aart
V.D. Neerweg 31, Öuderkerk A.D.
Amstel, The Netherlands

● MICHIGAN

Detroit Chapter
Call Dean Vieau, 313/493-5105

● MINNESOTA

MNFIG Chapter
Monthly, Ist Mon. Call Mark Abbot
(days) 612/854-8776 or Fred Olson,
612/588-9532, or write to: MNFIG,
1156 Lincoln Ave., St. Paul, MN
55105

● WEST GERMANY
West German Chapter
Contact Wolf Gervert, Roter Hahn 29,
D-2 Hamburg 72, West Germany,
(040) 644-3985

● UTAH

Salt Lake City Chapter
Call Bill Haygood, 801/942-8000

SPECIAL GROUPS
● VERMONT

ACE Fig Chapter
Monthly, 4th Thur., 7:30 p.m., The
Isley Library, 3rd Floor Meeting Rm.,
Main St., Middlebury, VT 05753.
Contact Hai Clark, RD #l Box 810,
Starksboro, VT 05487, 802/877-2911
days: 802/453-4442 eves.

Apple Corps FORTH
Users Chapter
Twice monthly. Ist & 3rd Tues., 7:30
p.m., 1515 Sloat Blvd., #2, San
Francisco, CA. Call Robert Dudley
Ackerman, 415/626-6295

● MISSOURI

St. Louis Chapter
Call David Doudna, 314/867-4482

● NEVADA

Las Vegas Chapter
Suite 900, 101 Convention Center Dr.
Las Vegas, NV 89109, 702/737-5670

Detroit Atari FORTH
Monthly, Ist Wed.
Call Tom Chrapkiewicz
313/524-2100 or 313/772-8291

● VIRGINIA

Potomac Chapter
Monthly, Ist Tues. 7p.m., Lee Center,
Lee Highway at Lexington Street,
Arlington, Virginia. Call Joel
Shprentz, 703/437-9218 eves.

● NEW JERSEY

New Jersey Chapter
Call George Lyons, 201/451-2905 eves.

Nova Group Chapter
Contact Mr. Francis Saint. 2218 Lulu,
Witchita, KS 67211, 316/261-6280
(days)

● NEW YORK

New York Chapter
Call Tom Jung, 212/746-4062

● WASHINGTON

Seattle Chapter
Call Chuck Pliske or Dwight
Vandenburg. 206/542-7611

MMSFORTH Users Chapter
Monthly, 3rd Wed., 7 p.m.,
Cochituate, MA. Dick Miller,
617/653-6136

Volume IV, No. 539FORTH Dimensions

CARTOONS

,'PLATANOS
h PLATAMOS'

1BAMAWA5B
K

h
e
K

>h -■-4L;.
Y FORMET task: zzzz...e \

K oo
o

t 0
o»

LEARN FORTH

JOIN FIG!

The best way to learn FORTH and keep up with implementation and
application information is to join the FORTH Interest Group. You will
receive each issue (six) of FORTH Dimensions as it is published and
you wil l be able to join a local FIG Chapter.

Membership costs $15.00 US, or $27.00 Foreign and runs concurrent
with the magazine year. Volume V covers from May, 1983 through April,
1984. Back Volumes I, II, III, and IV are available for $15.00, US or
$18.00 Foreign.

□ Yes, I want to join FIG and receive all of Volume V.
Name

Organization

Address

City

ZIPState

VISA

MASTERCARD

Expiration Date for Charge card:

Make check or money Order in US Funds on US Bank, payable to FIG. All prices
include postage. California residents add sales tax except on current membership.
No purchase Orders accepted without checks.

ORDER PHONE NUMBER: 415/962-8653

San Carlos, Calif. 94070PO Box 1105FORTH INTEREST GROUP

FORTH INTEREST GROUP

MAIL ORDER

FOREIGN
LßA AIR

$15 $27QMembership in FORTH Interest Group and
Volume V of FORTH DIfv£N5IONS

[^Back Volumes of FORTH DIMENSIONS. Price per each.

□ni
Qfig-FORTH Installation Manual, containing the language model

of fig-FORTH, a complete glossary, memory map and Installation instructions
QAssembly Language Source Listings of fig-FORTH for specific CPLTs

and machines. The above manual is required for installation.
Check appropriate boxCes). Price per each.
□l802
□8080
□PACE

□"Starting FORTH" by Brodie. BEST book on FORTH. (Paperback)
□ "Starting FORTH" by Brodie. (Hard Cover)
□ PROCEEOINGS 1900 FORME (FORTH Modification Lab) Conference
□ PROCEEDINGS 1981 FORME Conference, Both Volumes

[iVolume I, Language Structure
I jVolume II, Systems and Applications

□PROCEEDINGS 1982 FORME Conference
□ PROCEEDINGS 1981 FORTH Univ. of Rochester Conference
□PROCEEDINGS 1982 FORTH Univ. of Rochester Conference
□FORTH-79 Standard, a publication of the FORTH Standards Team
□Kitt Peak Primer, by Stevens. An in-depth self-study primer.
□BYTE Magazine Reprints of FORTH articles, 8/00 to 4/01
□FIG T-shirts: □Small | [Medium I iLarqe I I X-Laroe

□ llD □ IV

□6502
□ 8086/8086
□ NOVA

□ 6800 □6009 □VAX
□ 9900 □APPLE II □ECLIPSE
□ PDP-11 □68000 QAEPHA MICRO

□Poster, August 1900 BYTE cover, 16" x 22"
□FORTH Programmer's Reference Card. !f ordered separately,

send a stamped, addressed envelope.

$15 $18

$15 $18

$18$15

$16 $20
$20 $25
$25 $35
$40 $55
$25 $35

$35$25
$25 $35
$25 $35
$25 $35
$15 $10

$35$25
$ 5 $10
$10 $12
$ 3 $ 5

FREE

TOTAL

MAIL STOP/APT
PHOhE ()

NAME
ORGANIZATION

ADDRESS
CITY
VISA //
Expiration Date_

STATE
^MASTERCARD //.
(Minimum of $15.00 on Charge cards)

ZP COUNTRY

Make check or money Order in US Funds on US bank, payable to: FIG. All prices include
postage. No purchase ordere without check. California residents add sales tax. 1/83

ORDER PHONE NUMBER: (415) 962-8653

FORTH INTEREST GROUP* PO BOX 1105 »SAN CARLOS, CA 94070

FORTH INTEREST GROUP
P.O. Box 1105
San Carlos, CA 94070

