
 FORTH LOVE IF HONK THEN - FORTH LOVE IF HONK THEN - FORTH LOVE IF HONK THEN - FORTH LOVE IF HONK THEN - FORTH LOVE IF HONK THEN - FORTH LOVE IF HONK THEN

BBC MicroBit - now runs Mecrisp Forth under Windows
– and try VFXTESTAPPbit as a first Test Program

Juergen could get hold of a MicroBit via his STEM Ambassador Activity in the UK. Matthias Koch agreed to

give it a go and try to port Mecrisp to the MicroBit - hardly any documentation was available then - and as

result a MicroBit changed country to visit Germany. A couple of weeks later the port was successfully

finished. As a first step to run Mecrisp under Linux. And we tested it here in the UK as well.

But it should run under Windows as well, so some more head scratching was required. Jan Coombs and

Ulrich Hoffmann got interested and found the right links. And now anybody can run Mecrisp Forth under

Linux or as well now under Windows by installing it on the MicroBit.

Mecrisp can be found at http://mecrisp.sourceforge.net/

All of the information to set up the serial interface is available on the BBC MicroBit website

at https://www.microbit.co.uk/td/serial-library

To install the Mecrisp code is easy, but takes some time.

5 steps have to be executed:

install the serial library – get and install the Mecrisp Forth Program - get and install TeraTerm – get, install

and set up TeraTerm – download and install VFXTESTAPPbit.

Then start playing using VFXTESTAPP – more examples to follow.

1 Connect the MicroBit to your PC via the USB cable:

– the yellow light at the back of the Microbit will indicate power

- a new folder with the name MicroBit will show on the screen of the PC.

The MicroBit appears on the PC as a memory stick

2 Files:

DETAILS. TXT which contains data about the MicroBit software

DAPLink Firmware - see https://mbed.com/daplink

Version: 0234

Build: Oct 12 2015 14:53:22

MICROBIT.HTM , which is a link to https://www.microbit.co.uk/

2 Click on this link to go to the MicroBit website, which then leads to www.microbit.org

This activity is not needed to install Mecrisp Forth, but to look around on the MicroBit website

3 BUT, more important for us now is to get Mecrisp Forth installed and running;

a serial library is needed, which will allow for the MicroBit to talk to the PC via the serial USB.

Look for the serial library link https://www.microbit.co.uk/td/serial-library

Follow the instructions at https://developer.mbed.org/handbook/Windows-serial-configuration

in order to install the device driver

and follow the instructions there.

This will download the file mbedWinSerial_16466.exe onto your PC.

Double click on it to run the program

http://mecrisp.sourceforge.net/
https://www.microbit.co.uk/td/serial-library
https://mbed.com/daplink
https://www.microbit.co.uk/
http://www.microbit.org/
https://www.microbit.co.uk/td/serial-library
https://developer.mbed.org/handbook/Windows-serial-configuration

The installation will take a couple of minutes, so be patient

4 Now download the Mecrisp Hex Program File mecrisp-stellaris-microbit.hex

It is located at the same site where you have found the PDF you read now.

Save this file onto your PC desktop for easy access.

When you connected the Microbit to the PC, a MicroBit Folder had opened.

Copy the file mecrisp-stellaris-microbit.hex from your desktop and paste it into this MicroBit folder

Something funny will happen:

Mecrisp.hex will be visible shortly and then disappear.

This is normal. The MicroBit has transferred the information from this folder to a place on the Microbit.

There is a lot more information about Mecrisp available, we just want to keep it short here.

See the full information at http://mecrisp.sourceforge.net/ You can see the microbit files as part of the

package.

5 Now we have to set up the Terminal Function on the PC:

we suggest TeraTerm.

Start TeraTerm with a setting of 11520 Baud. 8 (bits) N (no parity) 1 (stop bit)

select LF, the default was CR

This is the serial Terminal Function needed, as the Microbit will communicate with the PC, and the PC will

act like a keyboard and a display for the MicroBit.

If you had not installed TeraTerm before, you can download it from the link shown in the PDF and click on

the exe https://www.microbit.co.uk/td/serial-library

 BEFORE AFTER

Select the correct Port. Open the Device Manager on your PC, under Ports(COM&LPT) you see here

mbed Serial Port (COM45), this might be a different COMxx on your PC.

Open Port on TeraTerm, select e.g. 45 from the drop down menue, TeraTerm had suggested 42 here

http://mecrisp.sourceforge.net/
https://www.microbit.co.uk/td/serial-library

Then push the RESET BUTTON on the back of the MicroBit and you should see the

ok on your screen.

This indicates that Mecrisp Forth is running now and is waiting for your commands.

Hit the return key again, and a new ok should show

Now type into the TeraTerm window

: Hello .” hello forth world “ ; do not forget the spaces - and hit return

The answer is again ok

Now type hello and hit the return key, and on the screen you can see

hello forth world

each time you hit the hello <cr> you will see the same message.

Now download the file VFXTESTAPPbit.f, and save onto the desktop. Open it with a suitable ASCII editor

program – this program I can actually open with Microsoft Word.

Then I selected the whole text, copy it, and paste it into the TeraTerm Window.

A few things will happen, which indicate that Mecrisp is “digesting” this information copied in.

And if all went well you should hear the PC Bell signal, and then another hello Forth World,

the display will change and you see some text and a series of 0 and ones altogether 16.

All of the explanations you can find at https://wiki.forth-ev.de/doku.php/en:projects:a-start-with-

forth:startere it is for MPE VFX and not for MicroBit, but the rest is the same.

But anybody who does not have a MicroBit can play with VFXTESTAPP by downloading the exe

and learn a bit about Forth as well – no age limits. Just download and run – no installation required.

More information will be made available as time allows.

There, the 35 Words of Forth used for this little application are explained.

Set and reset the bits, start a counter – fixed speed or set speed, try the logic examples and there is as well

a small debugger. Have fun and we will add more examples as time allows.

https://wiki.forth-ev.de/doku.php/en:projects:a-start-with-forth:startere
https://wiki.forth-ev.de/doku.php/en:projects:a-start-with-forth:startere

No warranty given – this is spare time work. Complaints, corrections, additions, expansions to

epldfpga@aol.com. They will be dealt with as spare time allows.

Our small application:

This FORTH LOVE IF HONK THEN was a secret sticker the Forth community has used over the last 30+ years, and you

will understand soon what it means:

 FORTH LOVE IF HONK THEN - FORTH LOVE IF HONK THEN - FORTH LOVE IF HONK THEN - FORTH LOVE IF HONK THEN - FORTH LOVE IF HONK THEN - FORTH LOVE IF HONK THEN

mailto:epldfpga@aol.com

Some software for the MicroBit – this is included in the Mecrisp files

\ basisdefinitions – Base Definitions for IOs

Compiletoflash \ compile this part to flash memory

\ display an ASCII flamingo

: Flamingo cr

." _" cr

." ^-)" cr

." (.._ .._" cr

." \`\\ (\`\\ (" cr

." |>) |> |)" cr

." ______/|________ (7 |` ______\|/_______a:f" cr

;

\ Port address definitions Port A

$400FF000 constant GPIOA_PDOR \ Port Data Output Register

$400FF004 constant GPIOA_PSOR \ Port Set Output Register

$400FF008 constant GPIOA_PCOR \ Port Clear Output Register

$400FF00C constant GPIOA_PTOR \ Port Toggle Output Register

$400FF010 constant GPIOA_PDIR \ Port Data Input Register

$400FF014 constant GPIOA_PDDR \ Port Data Direction Register

\ Port address definitions Port B

$400FF040 constant GPIOB_PDOR \ Port Data Output Register

$400FF044 constant GPIOB_PSOR \ Port Set Output Register

$400FF048 constant GPIOB_PCOR \ Port Clear Output Register

$400FF04C constant GPIOB_PTOR \ Port Toggle Output Register

$400FF050 constant GPIOB_PDIR \ Port Data Input Register

$400FF054 constant GPIOB_PDDR \ Port Data Direction Register

\ Port address definitions Port C

$400FF080 constant GPIOC_PDOR \ Port Data Output Register

$400FF084 constant GPIOC_PSOR \ Port Set Output Register

$400FF088 constant GPIOC_PCOR \ Port Clear Output Register

$400FF08C constant GPIOC_PTOR \ Port Toggle Output Register

$400FF090 constant GPIOC_PDIR \ Port Data Input Register

$400FF094 constant GPIOC_PDDR \ Port Data Direction Register

\ Port address definitions Port D

$400FF0C0 constant GPIOD_PDOR \ Port Data Output Register

$400FF0C4 constant GPIOD_PSOR \ Port Set Output Register

$400FF0C8 constant GPIOD_PCOR \ Port Clear Output Register

$400FF0CC constant GPIOD_PTOR \ Port Toggle Output Register

$400FF0D0 constant GPIOD_PDIR \ Port Data Input Register

$400FF0D4 constant GPIOD_PDDR \ Port Data Direction Register

\ Port address definitions Port E

$400FF100 constant GPIOE_PDOR \ Port Data Output Register

$400FF104 constant GPIOE_PSOR \ Port Set Output Register

$400FF108 constant GPIOE_PCOR \ Port Clear Output Register

$400FF10C constant GPIOE_PTOR \ Port Toggle Output Register

$400FF110 constant GPIOE_PDIR \ Port Data Input Register

$400FF114 constant GPIOE_PDDR \ Port Data Direction Register

$40049000 constant PORTA_PCR \ For Pin 0. Add n*4 for the other pins !

$40049080 constant PORTA_GPCLR

$40049084 constant PORTA_GPCHR

$4004A000 constant PORTB_PCR

$4004A080 constant PORTB_GPCLR

$4004A084 constant PORTB_GPCHR

$4004B000 constant PORTC_PCR

$4004B080 constant PORTC_GPCLR

$4004B084 constant PORTC_GPCHR

$4004C000 constant PORTD_PCR

$4004C080 constant PORTD_GPCLR

$4004C084 constant PORTD_GPCHR

$4004D000 constant PORTE_PCR

$4004D080 constant PORTE_GPCLR

$4004D084 constant PORTE_GPCHR

: init \ initialize

 Cr \ send a cr first

 Flamingo \ then the flamingo

 Cr \ then a cr again

 ." Have a nice day !" cr \ and Have anice day plus a cr

;

: init-led \ initialize LED

 $0100 1 4 * PORTD_PCR + ! \ Port D1 als GPIO aktivieren

 \ activate Port D1 as GPIO

 $2 GPIOD_PDDR ! \ Port D1 als Ausgang schalten

 \ switch Port D1 as Output

 $0100 18 4 * PORTB_PCR + ! \ Port B18 als GPIO aktivieren

 \ activate Port B18 as GPIO

 $0100 19 4 * PORTB_PCR + ! \ Port B19 als GPIO aktivieren

 \ activate Port B19 as GPIO

 1 18 lshift 1 19 lshift or GPIOB_PDDR ! \ Port D1 als Ausgang schalten

 \ Switch Port D1 to Output

;

: Bunt

 init-led

 begin

 key

 dup

 case

 [char] r of 1 18 lshift GPIOB_PTOR ! endof

 [char] g of 1 19 lshift GPIOB_PTOR ! endof

 [char] b of 2 GPIOD_PTOR ! endof

 endcase

 27 =

 until

;

: systick (ticks --) \ Ticks on 20.97 MHz

 $E000E014 ! \ How many ticks between interrupts ?

 7 $E000E010 ! \ Enable the systick interrupt.

;

: systick/16 (ticks --) \ Ticks on 1.31 MHz

 $E000E014 ! \ How many ticks between interrupts ?

 3 $E000E010 ! \ Enable the systick interrupt, Coreclock/16.

;

: systick-1Hz (--) 1310625 systick/16 ; \ Tick every second

: cornerstone (Name) (--)

 <builds begin here $3FF and while 0 , repeat

 does> begin dup $3FF and while 4 + repeat

 eraseflashfrom

;

cornerstone Rewind-to-Basis

compiletoram

init

: tick (--) ." Tick" cr ;

: clock (--)

 ['] tick irq-systick !

 systick-1Hz

 eint

;

\ Additional definitions included for VFXTESTAPPbit.f needed for Mecrisp on the Micro Bit
\ Juergen Pintaske - ExMark - 2016-09_26
\ for VFXTESTAPP go to https://wiki.forth-ev.de/doku.php/en:projects:a-start-with-forth:start

\ These Words are magic and more difficult, to be explained later.
\ They add the functionality MS and PAGE to Mecrisp as needed by the VFXTESTAPP
\ as well the timing loops have to be adjusted - counter, scounter, sos
: MS 410 0 DO 11 0 DO LOOP LOOP ; \ wait for about 1 millisecond (Loop number L1=410, L0=11),
 \ adjust L0 / L1 to get one msec delay in software according to the clock frequency used.
\
: u.base10 (u --) base @ decimal swap 0 <# #s #> type base ! ;
: ESC[(--) 27 emit 91 emit ;
: at-xy (column row --) 1+ swap 1+ swap ESC[u.base10 ." ;" u.base10 ." H" ;
: page ESC[." 2J" 0 0 at-xy ;
\
 \ : putpixel (x y --) at-xy [char] * emit ; \ not needed for now but probably later
\ +++
\ The Standard VFXTESTAPP from here onwards
\ MPE_VFX_TESTAPP© Write a simple Application - just 35 Forth Words, set IO bits, start a counter - \
\ ExMark, Juergen Pintaske 2016_09_22
HEX \ from now on all of the numbers are hexadecimal. MMT lines print a display window GUI, very basic,
\ just uses Page and CR
: Line1 ." \ copy INCLUDE c:\VFXTESTAPP\TESTAPP.f into VFX, hit <cr> ExMark Juergen Pintaske 22_Sept 2016" CR ; \
: Line2 ." \ PWHL T3HL T2HL T1HL O3HL O2HL O1HL O0HL I3HL I2HL I1HL I0HL A3HL A2HL A1HL A0HL h/l ????" CR ; \ ???? DEBUG
: Line3 ." \ PWM T3___T2___T1 O3___O2___O1___O0 I3___I2___I1___I0 A3___A2___A1___A0 " CR ;
Variable PSWI (Combined PWM and Switches X s s s)
Variable OUTP (OUTP 3 2 1 0)(same as Bit 7 6 5 4)
Variable IN (IN 3 2 1 0 (3 2 1 0 of the 8 Bits)
Variable ANI (Simulated analog input 0 to F, or just a Variable)
: disbit4 DUP $8 AND IF ." 1" ELSE ." 0" THEN ;
: ds Disbit4 1 LSHIFT ; \
: dssp ds Space Space space space ; \
: 4dssp dssp dssp dssp disbit4 drop ; \
: DATA 3 spaces PSWI @ 4dssp 4 spaces OUTP @ 4dssp 4 spaces IN @ 4dssp 4 spaces ANI @ 4dssp ; \ display the 16 bits
: SPACES (u --) 0 ?DO SPACE LOOP ; \ define SPACES, often included in the wordset already
: MBV2 PAGE Line1 Line2 Line3 DATA CR ; \ MultipleBitValues2 updates the “SCREEN”
: COUNTER Begin outp @ 1+ outp ! 300 ms mbv2 key? until ; \ run counter program, see the OUT bits change, just type
counter <cr>
: SCOUNTER Begin dup outp @ 1+ outp ! ms mbv2 key? until ; \ programmable speed, for example 400 scounter cr
: SOS 07 emit 100 ms 07 emit 100 ms 07 emit 600 ms 07 emit 300 ms 07 emit 300 ms 07 emit 600 ms 07 emit 100 ms 07 emit 100
ms 07 emit ;
: ???? 3 spaces PSWI @ . OUTP @ . IN @ . ANI @ . 4 spaces >R >R >R >R >R >R >R >R R> DUP . R> DUP . R> DUP . R> DUP . R> DUP
. R> DUP . R> DUP . R> DUP . ;
\ Preset Variables:
9 PSWI ! 0 OUTP ! 3 IN ! F ANI ! \
\ Control Words (from left to right as shown in MMT3)
: PWH PSWI @ $8 OR PSWI ! MBV2 ; \
: T3H PSWI @ $4 OR PSWI ! MBV2 ; \
: T2H PSWI @ $2 OR PSWI ! MBV2 ; \ A
: T1H PSWI @ $1 OR PSWI ! MBV2 ;
: O3H OUTP @ $8 OR OUTP ! MBV2 ; \ x x x x 1 0 0 0 OR e.g. 0101 gives 1101
: O2H OUTP @ $4 OR OUTP ! MBV2 ; \ 0 1 0 0 OR e.g. 0001 gives 0101
: O1H OUTP @ $2 OR OUTP ! MBV2 ; \ 0 0 1 0 OR e.g. 0101 gives 0110
: O0H OUTP @ $1 OR OUTP ! MBV2 ; \ 0 0 0 1 OR e.g. 0100 gives 0101
: I3H IN @ $8 OR IN ! MBV2 ;
: I2H IN @ $4 OR IN ! MBV2 ;
: I1H IN @ $2 OR IN ! MBV2 ;
: I0H IN @ $1 OR IN ! MBV2 ;
: A3H ANI @ $8 OR ANI ! MBV2 ;
: A2H ANI @ $4 OR ANI ! MBV2 ;
: A1H ANI @ $2 OR ANI ! MBV2 ;

https://wiki.forth-ev.de/doku.php/en:projects:a-start-with-forth:start

: A0H ANI @ $1 OR ANI ! MBV2 ; \ here end the words that Set Bits HIGH - the next ones set the same bits LOW
: PWL PSWI @ $7 AND PSWI ! MBV2 ; \ x x x x 0 1 1 1 AND e.g. 1111 gives 0111
: T3L PSWI @ $B AND PSWI ! MBV2 ; \ 1 0 1 1 AND e.g. 1111 gives 1011
: T2L PSWI @ $D AND PSWI ! MBV2 ; \ 1 1 0 1 AND e.g. 1111 gives 1101
: T1L PSWI @ $E AND PSWI ! MBV2 ; \ 1 1 1 0 AND e.g. 1111 gives11110
: O3L OUTP @ $7 AND OUTP ! MBV2 ;
: O2L OUTP @ $B AND OUTP ! MBV2 ;
: O1L OUTP @ $D AND OUTP ! MBV2 ;
: O0L OUTP @ $E AND OUTP ! MBV2 ;
: I3L IN @ $7 AND IN ! MBV2 ;
: I2L IN @ $B AND IN ! MBV2 ;
: I1L IN @ $D AND IN ! MBV2 ;
: I0L IN @ $E AND IN ! MBV2 ;
: A3L ANI @ $7 AND ANI ! MBV2 ;
: A2L ANI @ $B AND ANI ! MBV2 ;
: A1L ANI @ $D AND ANI ! MBV2 ;
: A0L ANI @ $E AND ANI ! MBV2 ;
\ Set I1 and/or I0 of the INPUTs, then call AND01, OR01, XOR01, INVERT0 and see the result of the logic result in O0
: AND01 IN @ DUP 1 RSHIFT AND 01 AND OUTP ! MBV2 ; \
: OR01 IN @ DUP 1 RSHIFT OR 01 AND OUTP ! MBV2 ; \
: XOR01 IN @ DUP 1 RSHIFT XOR 01 AND OUTP ! MBV2 ; \
: INVERT0 IN @ INVERT 01 AND OUTP ! MBV2 ; \
\ Forth Words used
\ 0 INCLUDE
\ 1 HEX
\ 2 \
\ 3 :
\ 4 ."
\ 5 CR
\ 6 ;
\ 8 Variable
\ 9 DUP
\ 10 $n
\ 11 AND
\ 12 IF
\ 13 ELSE
\ 14 THEN
\ 15 LSHIFT
\ 16 SPACE
\ 17 DROP
\ 18 DV
\ 19 @
\ 20 ?DO
\ 21 LOOP
\ 22 PAGE
\ 23 BEGIN
\ 24 1+
\ 25 !
\ 26 MS
\ 27 KEY?
\ 28 UNTIL
\ 29 EMIT
\ 30 .S
\ 31 .
\ 32 >R
\ 33 R>
\ 34 ()
\ - this covers all of the Forth words used. Not programmed optimally - not the target - beginner's code for beginners
sos page cr cr ." Hello World - and wait a second" cr cr 1000 ms \ send SOS and Hello World
\ type SOS <cr>, COUNTER <cr> to start COUNTER, 200 SCOUNTER <cr> or start setting BITS using the control words with H/L
\ PWH PWL T3H T3L T2H T2L T1H T1L O3H O3L O2H O2L O1H O1L O0H O0L I3H I3L I2H I2L I1H I1L I0H I0L DEBUG ????
(end)

