
Vierte Dimension 2023/1

The Forth Magazine
for science and technology, for commercial EDP,
for ICE–technology, for the passionate hobbyist

In this Issue:

FEE — Forth Enhanced Editor

Flashing Forth

First Steps Towards an Astroimaging
Control System in Forth

Souped Up SBCs

Booting Programs from Disk

Sculpting Forth for SPI Flash

Internationalization With Gforth and
ΜΙΝΩΣ2 — Part 2

Attention: Date has been Changed!
Forth Conference 2023 from 05 to 07
May 2023 (Online)

Volume 39 — Issue 2023/1 — 4,–e Organ of the German Forth–Gesellschaft e.V.

Services and Products

tematik GmbH
Technische
Informatik

Feldstraße 143
D–22880 Wedel

Fon 04103 – 808989 – 0
Fax 04103 – 808989 – 9

i .me dk@ tt el aa im
http://www.tematik.de

Seit 2001 entwickeln und vertreiben wir unter dem Mar-
kennamen „Servonaut“ Baugruppen für den Funktions-
modellbau wie Fahrtregler, Lichtanlagen, Soundmodule
und Funkmodule. Unsere Module werden vorwiegend in
LKW–Modellen im Maßstab 1:14 bzw. 1:16 eingesetzt,
aber auch in Baumaschinen wie Baggern, Radladern etc.
Wir entwickeln mit eigenen Werkzeugen in Forth für
die Freescale–Prozessoren 68HC08, S08, Coldfire sowie
Atmel AVR.

Forth Trainings

Do you want to learn the Forth programming language
or get trained in the new Forth developments? Do you
have products based on Forth and would like to train
employees in the maintenance and further development
of these products?

We offer training in legacy Forth systems (FIG–Forth,
Forth83), ANSI–Forth and the latest Forth 200x stan-
dards. Our trainers have over 20 years of experience
with Forth programming on embedded systems (ARM,
MSP430, Atmel AVR, M68K, 6502, Z80 and many more)
and on PC systems (Linux, BSD, macOS and Windows).

Carsten Strotmann @ at trrs m e.nos nte dnca
https://forth-schulung.de

RetroForth
Linux · Windows · Native

Generic · L4Ka::Pistachio · Dex4u
Public Domain

http://www.retroforth.org
http://retro.tunes.org

Diese Anzeige wird gesponsort von:
EDV–Beratung Schmiedl, Am Bräuweiher 4,
93499 Zandt

Weitlstraße 140
Cornu GmbH 80995 München

Ingenieurdienstleistungen s oc r u ee @l .dnsa
Elektrotechnik www.cornu.de

Unser Themenschwerpunkt ist automotive SW unter
AutoSAR. In Forth bieten wir u. a. Lösungen zur Verar-
beitung großer Datenmengen, Modultests und modell-
getriebene SW, z. B. auf Basis eCore/EMF.

KIMA Echtzeitsysteme GmbH

Güstener Straße 72 52428 Jülich
Tel.: 02463/9967–0 Fax: 02463/9967–99
www.kimaE.de E ea@f d.imon ki

Automatisierungstechnik: Fortgeschrittene Steuerungen
für die Verfahrenstechnik, Schaltanlagenbau, Projektie-
rung, Sensorik, Maschinenüberwachungen. Echtzeitrech-
nersysteme: für Werkzeug– und Sondermaschinen, Fuzzy
Logic.

FORTecH Software GmbH

Tannenweg 22 m D–18059 Rostock
https://www.fortech.de/

Wir entwickeln seit fast 20 Jahren kundenspezifische Software
für industrielle Anwendungen. In dieser Zeit entstanden
in Zusammenarbeit mit Kunden und Partnern Lösungen
für verschiedenste Branchen, vor allem für die chemische
Industrie, die Automobilindustrie und die Medizintechnik.

Ingenieurbüro Tel.: (0 82 66)–36 09 862
Klaus Kohl–Schöpe Prof.–Hamp–Str. 5

D–87745 Eppishausen

FORTH–Software (volksFORTH, KKFORTH und vie-
le PD–Versionen). FORTH–Hardware (z. B. Super8)
und Literaturservice. Professionelle Entwicklung für
Steuerungs– und Messtechnik.

Microcontroller Pool
Forth–Gesellschaft e. V.

We provide high quality evaluation boards, also
FPGA, including Forth systems: Cypress, RISC–V, TI,
GA144, MicroCore, SeaForth, MiniMuck, Zilog, Moto-
rola, 68HC11, ATMEL, Hitachi, Renesas, Lego . . .
https://wiki.forth-ev.de/doku.php/mcv:mcv2

2 Forth Magazine Vierte Dimension 2023/1

http://www.tematik.de
https://forth-schulung.de
http://www.retroforth.org
http://retro.tunes.org
http://www.cornu.de
www.kimaE.de
https://www.fortech.de/
https://wiki.forth-ev.de/doku.php/mcv:mcv2

Contents

Letters to the Editor and News . 5

FEE — Forth Enhanced Editor . 9
Ingolf Pohl

Flashing Forth . 13
Ingolf Pohl, Wolfgang Strauß

First Steps Towards an Astroimaging Control
System in Forth . 15

Andrew Read

Souped Up SBCs . 18
Rafael Deliano

Booting Programs from Disk . 20
Rafael Deliano

Sculpting Forth for SPI Flash . 22
Michael Kalus

Internationalization With Gforth and ΜΙΝΩΣ2 —
Part 2 . 28

Bernd Paysan

Attention: Date has been Changed!
Forth Conference 2023 from 05 to 07 May 2023

(Online) . 32
Organization: Board of the Forth Gesellschaft

Cover picture: Carving quills Author: Sketch processed by mk
Source: Fetched from the internet

2023/1 Forth Magazine Vierte Dimension 3

Imprint
Title of the Magazine
Vierte Dimension
Publisher
Forth–Gesellschaft e. V.
P.O. Box 1030
48481 Neuenkirchen
Germany
Email: .dry@ eoe er h-ta f t vrS ce

t - v du of .r rrk h ee t ei m@oiD
Bank account: Postbank Hamburg

BLZ 200 100 20
Kto 563 211 208

IBAN: DE60 2001 0020 0563 2112 08
BIC: PBNKDEFF

Editorial & Layout
Bernd Paysan, Ulrich Hoffmann
Email: dh .vo -rt@ eefd4

Ad Management
Office of the publisher

Editorial Deadline
January, April, July, October each
in the third week

Publication Frequency
1 issue per calendar quarter

Unit Price
4,00e plus postage and packing

Manuscripts and Rights
All manuscripts sent in will be con-
sidered. Letters to the editor may
be reproduced without consultation.
For articles marked with the name
of the author, the editorial team
only accepts responsibility under
press law. The articles published in
this magazine are protected by copy-
right.
Translation, reproduction, as well as
storage on any media, in whole or in
part, is only permitted with exact
reference to the source. The submit-
ted contributions must be free from
claims of third parties. Published
programs go — as far as nothing
else is noted — into the public do-
main.
No liability can be accepted for
text, circuit diagrams or assembly
sketches which lead to the non–
functioning or possible damage of
components. All publications are
made without consideration of possi-
ble patent protection. Trade names
are used without any warranty of
free use.

Editorial

Dear Readers,

our annual Forth meeting is coming up! Soon it will
be finally time again. On the back page is explained
how you can participate. You have probably noticed:
The date planned before Christmas in the last issue has
been postponed. The meeting has been moved to May.

No need to travel, we’ll stick with the video conferencing
format. Why? Because now we are able to. After
the quill pen and riding messengers came letterpress,
letter mail, typewriter, keyboard, and now microphone
and camera — the videophone made arguably its first
appearance in film history in Fritz Lang’s Metropolis,
now we’re doing videoconferencing.

The simplified letters of the initial terminals are already retro again. Writing as
an art has prevailed. Computer fonts and handwriting are converging again. And
the tools around Forth are not standing still either. If Forth in its smallest form
on MCUs sometimes seems like a quill, the large Forth systems are far ahead in
progress. But the tools for the smallest ones are catching up.

Ingolf Pohl has also taken up this theme. What do you think of his FEE?
It is of course tailored to his projects — Embedded with Mecrisp. I am curious
about the response. And so that you can get Mecrisp into the target as well, the
tool will do that for you too.

Andrew Read takes us into the world of astronomy and its great modern
possibilities. Did Charles Moore, when developing Forth, see that it would be
possible to use such professional equipment for celestial exploration from home?

Of course, such telescope control systems require solid and reliable hardware.
Rafael Deliano again lets us participate in such developments, which are robust
and adapted to the purpose. Of course, it is important that the components are
also available. Let’s hope it stays that way. Last year was not so good — you
remember: supply shortages.

Finally, Bernd Paysan describes how far the representation of quite different
writings of the world has already progressed in his ΜΙΝΩΣ2. And thus follows
up on his report from the last issue. Here we are finally away from the quill —
although who knows? Maybe I’ll be around to see a Gforth humanoid send me a
handwritten letter, written with a self–carved swan–wing quill.

Last but not least, even I was able to contribute something Forthy this time,
because I was allowed to explore SPI. Dirk Brühl was my sponsor. He provided
the components and the board. Many thanks for that.

[Translated to English by Wolfgang Strauß]

You do not have to manually type the source codes in the VD. You can easily
download them from the web page of the association.
http://fossil.forth-ev.de/vd-2023-01

The Forth–Gesellschaft e. V. is represented by its board of directors:

Ulrich Hoffmann Contact: r eom h vt i t@ek r du eFr -o .iD
Bernd Paysan
Gerald Wodni

4 Forth Magazine Vierte Dimension 2023/1

http://fossil.forth-ev.de/vd-2023-01

Letters to the Editor and News

Figure 1: Chris Hay

Why Forth Language is Important

Chris Hay (fig. 1) recently posted an initially unassum-
ing video on YouTube titled: “Introduction to Forth
Programming Language — Tutorial for Beginners!” But
he doesn’t leave Forth standing in and of itself as it so
often does. He impressively shows the usefulness of such
concepts as Forth using the example of Bitcoins.

So his introduction is reproduced here in full. Well done,
I think.

“An introduction tutorial to the FORTH program-
ming language and why it’s important. If you truly
want to understand stack machines, WebAssembly,
bitcoin, blockchain or smart contracts then you
really need to learn Forth programming.

Although the Forth language is an old program-
ming language, it will truly help you understand
stack machines, stack programming and funda-
mental computer science concepts. It even helps
you understand how modern concepts such as bit-
coin and smart contracts work. Bitcoin Script
which is the smart contract language that powers
the bitcoin blockchain is completely built upon on
the Forth language. Satoshi Nakamoto was no
doubt a Forth programmer with a Forth program-
ming background.

In this video, Chris gives you an introduction
to Forth using Gforth and shows you how to
quickly get started with the language. We look at
arithmetic, stack operations, words and give you
enough of an introduction to the language itself.

We then compare the Forth language to Bitcoin
Script by looking at the source code of the cur-
rent version and 0.5.0 release of bitcoin written
by Satoshi Nakamoto, getting into the mind of
the creator and theorizing on Satoshi Nakamoto’s
background based on actual code.

We finally look at how close Gforth is to assem-
bly by looking at an old Forth interpreters source

code and looking at how close the language is to
asssembly.”

There is a division into chapters that can be called up
specifically. So you don’t have to go through the 44–
minute clip from beginning to end. Pick out what you’re
particularly interested in. cas/mk

00:00 why Forth language is important

01:45 installing Gforth

02:18 getting started with Forth programming with
Gforth

02:35 introduction to stack machines

03:00 programming stacks with Forth

06:08 performing arithmetic with Forth using post-
fix

12:08 stack operations (dup, drop, rot, over, nip,
swap)

20:48 explaining stack diagrams

23:08 words or functions with Forth

27:53 comparing Bitcoin Script to Forth

32:21 2drop, 2dup, 2swap etc.

34:39 Satoshi Nakamoto was a Forth program-
mer

36:31 Bitcoin Script commands that were disabled

37:32 comparing Forth to assembly by dissecting
eForth source code

39:15 Forth extends itself

40:35 conclusion

https://www.youtube.com/watch?v=i7Vz6r6p1o4

Mon bon Forth 0.5.4 (Atari ST)

“It’s a FORTH Editor, Interpteter and Compiler
for the ATARI computers. Version 68030 (Falcon,
TT) and 68000 (STe) . . . ”

The friends of vintage computing should be happy. Guil-
laume Tello published version 0.5.4 on his website at
the end of January this year. His Forth, which is com-
pletely specialized for these machines, can now do even
more:

• M&E modules management (load/save images + ef-
fects) + AUDIO modules

• 2D and 3D curves and surfaces

• Dialog with M_PLAYER/MP_STE for videos

• In–line help with help/guide and ST–Guide or
HypView

• Allows multitasking with separate pages and stacks

2023/1 Forth Magazine Vierte Dimension 5

https://www.youtube.com/watch?v=i7Vz6r6p1o4

Letters to the Editor and News

Figure 2: Polar curve r(t)

His website shows quite a few Forth examples, e.g. the
2D Maths:
gr_window — to define the limits of the axes
gr_axes — to draw axes
gr_grid — to display a grid
gr_y(t), gr_xy(t), gr_r(t) — for the different types
of curves (fig. 2)

By the way, a 3D Math is already included.

His Forth is comfortable, just not dependent on foreign ed-
itors and has many helps, which make the simple dealing
with it possible.

The Forth manual, a PDF with 219 pages, covers ev-
erything about Forth and the operating system of the
machines itself.

Congratulations, great job! cas/mk

https://gtello.pagesperso-orange.fr/forth_e.
htm

From Gforth to Lichen

While we’re on the subject of editing and creating some-
thing presentable:

“Lichen is the simplest possible CMS1 for the web
that is friendly enough for non–technical users.
Comprised of just a few Forth CGI scripts, it is
extremely lightweight . . . ”

And what do you need for Lichen?

• A POSIX–compatible environment

• A CGI–capable web server

• Gforth v0.7.3+

The Lichen web site itself is written in Lichen, so it’s an
example of the ease with which you can do this kind of
thing — very elegant, in my opinion. cas/mk

Figure 3: Screenshot of the Lichen source code editor

https://lichen.sensorstation.co/

busy? oder ready?

How should one turn the logic? This question came up
recently when I was exploring an external Flash via SPI.
Wolfgang Strauß, who saw my SPI article (further
back in this magazine), said that if you take the phrase

begin busy? until

literally, it would not make sense, even if it worked. What
had happened in my Forth code? Let’s turn this back
to the beginning: What was that again with the BUSY
flag?

In the datasheet of the Winbond SPI–Flash it is explained
what the bits in its status register mean, especially the
bit S0:

9.1.1 BUSY

BUSY is a read only bit in the status register (S0)
that is set to a 1 state when the device is executing
a Page Program, Sector Erase, Block Erase, Chip
Erase or Write Status Register instruction. During
this time the device will ignore further instructions
except for the Read Status Register instruction
. . . When the Program, Erase or Write Status
Register instruction has completed, the BUSY bit
will be cleared to a 0 state indicating the device
is ready for further instructions.

Status S0
busy 1
ready 0

Table 1: Flash status bit S0
1Content Management System

6 Forth Magazine Vierte Dimension 2023/1

https://gtello.pagesperso-orange.fr/forth_e.htm
https://gtello.pagesperso-orange.fr/forth_e.htm
https://lichen.sensorstation.co/

Letters to the Editor and News

The higher bits also have meanings, but we will ignore
them for now.

So before you can do anything with the Flash, you have
to get its status.

: status (-- u) \ read status register
csdown 05 >spi spi> csup ;

There it is on the stack now.

As long as S0 is set, you have to wait. If one interprets
the set bit S0 as a true flag, one would have to formulate
in pseudo code:

flag while --> restart loop if flag is true.

Alright, extract the flag from the status byte:

: busy? (-- S0) status 1 and 0<> ;

Because 1 does not necessarily equal true in Forth, you
test for “different from zero” and get your true.

The waiting loop then reads in Forth:

begin busy? while repeat

Or you test for 0= and get the inverted logic. Now S0=0
is true and the pseudocode reads:

flag until -> restart loop if flag is false.

: ready? (-- S0) status 1 and 0= ;

I kind of like the “positive” waiting loop better. What do
you think?

begin ready? until

Like the traditional one:

begin key? until ...

mk

Spotlight: Memory Accesses with Different
Word Widths

The world of 16–bit Forth systems was simple. To access
bytes or characters, there were C@ and C!, to edit cells
— 16 bits at that time — there were @ and !. But the
time of 16–bit systems is gone and now there are 32– and
even 64–bit systems. How do you deal with the 16–bit
and 32–bit words in these systems? One possibility is
the definition of numerous additional memory operators.
At least one should be able to agree on suitable names.
Here’s an overview of the naming schemes so far.

Memory Operators in 32–Bit Systems

On a 32–bit system, you typically have three word widths
to work with: bytes (8 bits), halfwords (16 bits) and
longwords (32 bits).

8–Bit Bytes

Here the traditional access is done with c@ and c! and the
bytes are considered unsigned, therefore no sign extension
takes place.2

16–Bit (Half) Words

Such accesses are named inconsistently, but it has be-
come common to call this address bit width word and
to use operators with W as a prefix for it. (Half) words
are considered to be unsigned or signed. Therefore, there
are read accesses with or without sign extension; tab. 2
shows some examples. Others do it differently.

Forth unsigned fetch signed fetch store
Open Boot w@ <w@ w!
Gforth uw@ sw@ w!

Swiftforth w@ w@s w!
VFX–Forth w@ w@s w!

Table 2: Some 32–bit systems and their halfword memory
operators

32–Bit (Long) Words

64–bit systems also offer 32–bit accesses, but these ac-
cesses are also named inconsistently. But it has become
common to call them longwords and to use the L prefix
for operators used for 32 bits. Longwords are considered
unsigned or signed.

Forth unsigned fetch singned fetch store
Open Boot l@ l@ l!
Gforth ul@ sl@ l!

Swiftforth l@ l@s l!
VFX–Forth @ (no symbol) !

Table 3: 32–bit and 64–bit systems and their 32–bit memory
operators

64–Bit Words

The 64–bit systems of course also access the memory on
a 64–bit basis. These operators have the prefix X. But
memory cells of the (data) stack width are typically pro-
cessed only with @ and ! without prefix. These prefixless
fetch and store are then at the same time the matching
aliases to w@ w! (16–bit system), l@ l! (32–bit system)
or x@ x! (64–bit system).

2However, VfX [2] has the operator c@s for sign extension.

2023/1 Forth Magazine Vierte Dimension 7

Letters to the Editor and News

Outlook

The memory operators are in the current standardization
discussion.

Using this zoo of operators is highly unpleasant.

In seedForth (32 bit on PCs) there is no halfword support.
There are only c@ c! (unsigned) and @ ! (32 bit unsigned
or signed, but irrelevant). But you don’t have to save
memory there anyway.

The Forth community goes in the direction of Values and
Value Flavoured Structs (structures whose fields are like
Values, see below). For smaller memory sizes you then
have cValue and uwValue swValue, ulValue uxValue,
etc., if any.

Data is placed on the stack by value taking care (with
or without sign extension). Writing access is always done
via TO, which of course internally uses the appropriate
operator.

The application programmer is thereby relieved and does
not have to pick the correct operators constantly. The
readability and maintainability is increased too.

In a prototypical implementation of Value Flavoured
Structs an example struct would be defined like this:

0
int8: u8
sint8: s8
int16: u16
sint16: s16
int32: u32
Constant myStruct
Create S myStruct allot

int8: etc. are defining words for fields of matching size
(and type).

The field names (here u8 s8 . . .) then perform the offset
calculation and reading of the value: e.g. reads

S s16

the field s16 with sign extension (because of type sint16)
and puts the value on the stack.

It can be set e.g. with

-42 S TO s16

In this case, the most significant bits above bit 15 are
truncated; analogously for all other fields.

And is there also SEX ?3

This then must be able to do an 8–bit and 16–bit sign
extension, so cSEX and wSEX, or how? Or one ignores
the memory requirement and stores everything in 32 bits.
And is that acceptable for a small system?

Such questions dissolve into thin air if one works object–
oriented. Values and Value Flavoured Structs are an
intermediate way, but also need a polymorphic TO. But
this would be comparably easy to implement.

With Value Flavoured Structs there are no other meth-
ods (maybe +TO and ADDR, if you absolutely like to have
them).

Objects are the logical progression.

But for a standardization we would need a best practice
supported by the Forth community. But this is not to be
seen. What can it look like?

Ulrich Hoffmann

ESP32forthStation

Zoom, December 10, 2022 — that’s where I introduced
the ESP32forthStation. It’s a standalone single board
Forth computer with WLAN networking capabilities. It
has ports for a keyboard (PS/2), a video monitor (VGA),
communicates via USB or WLAN, and can be used as a
full development platform for experiments.

Based on open source projects, the small TTGO
VGA32 board from LilyGo houses the complete
ESP32forthStation. And the ESP32forth inside it now
works with the FABGL and ESP32forth libraries made
by Fabrizio Di Vittorio and Brad Nelson. The
code is licensed under the terms of the GNU GENERAL
PUBLIC LICENSE.

The ESP32forthStation can be flashed via the Arduino
IDE.

Ulrich Hoffmann

Figure 4: TTGO VGA32 board from LilyGo

More information and contact with the author can be
found on the website of his project:

https://github.com/uho/ESP32forthStation

[Translated to English by Wolfgang Strauß]

3 SignEXtend (taken over from 6809)

8 Forth Magazine Vierte Dimension 2023/1

https://github.com/uho/ESP32forthStation

FEE — Forth Enhanced Editor

FEE — Forth Enhanced Editor
Ingolf Pohl

In the last issue (VD2022–04) Wolfgang Strauß reported about the project Feuerstein and mentioned there also my
editor FEE (Forth Enhanced Editor). I would like to describe here how the idea came up to develop an own tool for the
communication with a microcontroller target and how to work productively with the tool.

My Queries to the Forthers

I started programming Forth because it allows interactive
programming of a target system. You communicate with
the compiler in the target system through a terminal
— wait, through a terminal? What about the code you
just sent to the compiler, where did it go? It’s gone? It
can’t be! I asked a few Forth programmers at Project
Feuerstein and got answers like, “What’s your problem?
You write in your favorite editor, Emacs, and then copy
the code into the terminal window”. Copy? From the
editor to the terminal? Possibly line by line, because the
timing is not right? No, I would not have expected that
at all . . .

Background

I’m already spoiled by another stack–oriented and inter-
active programming language/environment — Fifth. Yes,
you wouldn’t believe it, in the 80s an old professor of mine
developed a very Forth–like programming language.1 It
was also used for programming heterogeneous multipro-
cessor systems (controllers, DSPs, transputers etc.) for
multibeam echo–sounders. The thing ran on the PC un-
der DOS; a system for X86, C167 and ADSP2181 was
barely 160KB in size and connected to the target system
via serial interface. Special was that the crosscompiler
was controlled by its integrated editor. Programming was
quite simple and interactive:

1. Write a piece of source code.

2. Press the “Try” button to try it out: the compiler
compiles the code, transfers it to the target system
and executes it there, outputs are displayed in the
editor window.

3. The source code remains in the editor window; you
can improve it, change it, discard it or you decide it’s
fine.

4. When the source code is ready, press the compile
button: the compiler compiles, stores the code in the
target system and extends the dictionary in the com-
piler. The new words can now be called from new
code or from the PC. The source code is put on the
stack (where else?) with compiled source code.

Also the source code management was actually quite sim-
ple — only the one, small DOS window was a hindrance.
There were three text areas, of which, unfortunately, you
could only see one at a time:

AreaA: Finished source code — what you had compiled
and was fine

AreaB: Sourcecode under construction — what you
write and try out right now

AreaC: Forthcoming code — code that is not yet com-
pilable, test code

I would be delighted to have something like this for Forth
as well . . .

An Interactive Editor is Needed

I would like to have such an editor for Forth source code,
with at least three text areas that are also editable in a
normal editor:

--- start of text ---------------
mature, already compiled code

--- text border -----------------
code just to be compiled

--- text border -----------------
code not yet compiled

--- end of text -----------------

• A button to have a try: current text is sent to the
target system

• A button to compile: current text is sent to the target
system and then pushed to the upper area

The idea is to build the source code within an editor
window, and then easily transfer the code to the target
machine. The inputs and outputs for controlling the
program should be handled in a terminal window. I want
it to be an editor with an extra terminal window, not a
terminal with an editor window!

Quickly Fiddle Something in Python

I am not the most experienced PC programmer. So I
need something that makes the PC and its windows easily
accessible to me. It would also be great if every Feuerstein
member could use the editor under his currently running
environment. So I came to Python 3 with tkinter and
pyserial. A text window with ready to use editing func-
tions is quickly set up. The serial interface directly, via
USB or even via Telnet can be easily accessed. I would
have liked to do it in Forth, but did not find a suitable
system for me.

1Fritz Mayer–Lindenberg, https://www.researchgate.net/profile/Fritz-Mayer-Lindenberg

2023/1 Forth Magazine Vierte Dimension 9

https://www.researchgate.net/profile/Fritz-Mayer-Lindenberg

FEE — Forth Enhanced Editor

The editor works according to the principle described
above. From the terminal the editor is called and appears
in its own window. In the editor window, text that sits
between two text boundaries (stoppers) can be sent to
the target system in the desired two ways:

• ctrl+enter to try things out

• alt+enter for final compilation

The source code to be sent is the text area between two
stoppers where the cursor is currently placed.

Of course, you can work with only one text area or with
any number of text areas, so text start and text end are
also text boundaries.

The terminal window from which the editor was started
acts as the terminal window for the input/output of the
target system.

Working With the FEE Editor

I personally work with FEE and Mecrisp on a
GD32VF103 board as follows and divide the source code
by stoppers into at least 4 areas, better more. Thereby I
use the ability of Mecrisp to compile either into Flash or
RAM:

Area 1: Comments and eraseflash for quick access

Area 2: Code of great trust — goes into Flash

Area 3: Code of little trust — goes into RAM

Area 4: Code being worked on — also uses RAM

Areas>4: Ideas, test functions, drafts . . .

If I have a new system or a completely messed up Flash,
I simply run sections 1 to 3 in sequence using the “trial
function” and quickly have my development status back.

The eraseflash is in area 1 because Mecrisp resets af-
terwards and does not return an “ok.”. Otherwise you
could execute everything in one go.

In area 2 with the “code of great confidence” are often
only a few include statements that load proven code from
external files into Flash.

Area 3 with the “low confidence code” loads into RAM.2
This code is either not yet ready for Flash or is only used
for development.

My current workspace is in area 4 — of course, it can also
be in another area, depending on the developer discipline.
The code in this block is edited, tried, edited again, tried
again . . . until I am satisfied with it. “Trying” is ideally
done simply by hotkey ctrl+enter. And when the code
is ready, I move it to the text area above with a final
compilation via hotkey alt+enter.

When trying, I like to use forget or del from Matthias
Koch. In the example I use the del method, which
deletes the last compiled word from the dictionary and

thus prevents the dictionary from getting bigger and
bigger and eventually overflowing.

Higher areas I use as storage for test code, ideas, alterna-
tive approaches, comments. Often I already design the
top–down code there, while in area 4 its counterparts
grow bottom–up.

When I’m done, I have a large block of text that is com-
piled in one pass into the final memory areas of the target
system. I can then store this as source code together with
the include files and keep it.

Figure 1 shows a short example with about 40 lines of
code, as it may actually look like in my work.

Figure 1: Example of all aspects of interactive work

The areas are marked with (1) to (4) for clarification. I
mess around in the source code of the word trial and try
it with ctrl+enter. I do this until I am satisfied. Due
to del the dictionary stays without overflow when trying
repeatedly. For the final compile, the helper lines with
the preparations are removed — here the configuring of
the port, the function call, the stack inspection and the
del statement.

What Else Does the Editor Offer?

Relatively quickly one after the other, I added a few
useful features to the system.

• There is an include to load external source code.

• Optionally, comments and blank lines can be omitted
when transferring.

2The ability to compile into Flash or RAM is a special feature of Mecrisp–Forth.

10 Forth Magazine Vierte Dimension 2023/1

FEE — Forth Enhanced Editor

• Text stoppers can be inserted via hotkey.

• A hardware reset via the DTR3 line can be triggered
by hotkey.

• Transmission of a single line can be initiated by
hotkey.

• The transmission is tailored to Mecrisp.

• There is a magic textblock–to–file conversion with
include–paste.

• “Empty” GD32VF103 or STM32F103 chips, which do
not yet contain Mecrisp, can have the Forth uploaded
via the serial interface.

• The baud rate for communication can be switched by
a special word in the comment during compilation.

• Before critical operations, the editor saves a times-
tamped copy in the subdirectory ./sav/

• Optionally, you can have the output of the target
system written to a log file.

• Now there is also an undo/redo function.

In the appendix you will find a list of functions and as-
signed hotkeys. By the way, they only work in the active
editor window and therefore do not interfere elsewhere.

What Does FEE Stand For Anyway?

Originally, the TLA (Three Letter Acronym) FEE stands
for “Forth Enhanced Editor”. But there’s no fun in that,
it’s much too formal. With Feuerstein we thought that a
girl/boy called “Fietje” is such a “Feuerstein”, which deals
with the Forth. Therefore the F can also stand for Fietje
or Feuerstein. The second E then stands for extended,
excellent, elegant, elaborate, etc. The last E remains for
editor — I would not call it an environment without a
built–in compiler.

Where to Get It From?

You can find the project page of FEE at
https://forth-ev.de/wiki/projects:fee:start

[Translated to English by Wolfgang Strauß]

Figure 2: FEE in action, color scheme “Dark Mode”. Side by side the terminal window (left) and the editor window (right).
In the editor you can see the test code for a simple dice game. Each line can be sent individually to the Forth system with
shift+enter. By the way: FEE can be customized by setting parameters when called. A sample shell script can be found in
Appendix E.

Appendices

Appendix A: File Functions, Menu “File”

ctrl+o = Open a file

ctrl+r = Reload file, overwrite editor content

ctrl+s = Save file

ctrl+shift+s = Save file as . . .

ctrl+shift+w = Enable/disable log file function

ctrl+shift+q = Quit, close editor window

Appendix B: Editor Functions, Menu “Edit”

ctrl+z = Undo last action

ctrl+shift+z = Redo last action

ctrl+x = Cut selected text to clipboard
3Data Terminal Ready (handshake signal of the serial interface)

2023/1 Forth Magazine Vierte Dimension 11

https://forth-ev.de/wiki/projects:fee:start

FEE — Forth Enhanced Editor

ctrl+c = Copy selected text to clipboard

ctrl+v = Paste selected text from clipboard

ctrl+l = Cut entire line of text to clipboard

alt+l = Copy entire line of text to clipboard

ctrl+v = Paste entire line of text from clipboard

shift+enter = Try line — send current line to target

ctrl+enter = Try block — send current block to target

alt+enter = Submit block — send current block to
target and push up

ctrl+j = Insert stopper–flag line

alt+j = Export current text block, replace with include

ctrl+shift+m = Show/hide whitespace

Appendix C: Support Functions, Menu “Tools”

ctrl+q = Clear content of the terminal window

alt+q = Hardware reset of target system

no hotkey : Flash target system with binary file

AppendixD: Some Important Hotkeys of “tkinter”

ctrl+x = Cut selected text to clipboard

ctrl+c = Copy selected text to clipboard

ctrl+v = Paste selected text from clipboard

ctrl+y = Same as ctrl+v

ctrl+b = Move cursor back one character

ctrl+f = Move cursor forward one character

ctrl+p = Move cursor to previous line

ctrl+n = Move cursor to next line

ctrl+a = Move cursor to start of line

ctrl+e = Move cursor to end of line

ctrl+i = Insert tabulator

ctrl+d = Delete character at cursor

ctrl+h = Remove character to the left of cursor

ctrl+k = Kill rest of line

ctrl+t = Swap the two chars to the left of cursor

Appendix E: Shell Script to Start FEE Easily

1 #!/bin/bash
2
3 args=(# Path of FEE Python file
4 ~/Feuerstein/work/FEE/FEEv20.py
5 # The next two parameters are mandantory
6 /dev/ttyUSB0 # Serial device
7 115200 # Baudrate
8 # The next parameters are optional. If given,
9 # they override the defaults.

10 # At the end of this file there is a list of
11 # supported parameters
12 fn=’Ubuntu Mono’ # A monospaced font
13 fs=16 # Fontsize
14 fc=#e3e355 # Font color (amber)
15 bc=#2e3436 # Background color (dark grey)
16 ac=#ff5500 # Active color (orange)
17 cc=#ff5500 # Cursor color (orange)
18)
19 python3 "${args[@]}"
20
21 # Complete list of additional command line parameters,
22 # which can be added after the 2nd parameter:
23 #
24 # DTRN : inverts the DTR-Reset from
25 # active low (default) to high
26 # RTSN : inverts the RTS-Boot0 from
27 # active high (default) to low
28 # RTSCTS : activates HW handshake via RTS/CTS
29 # NOSAVE : switches off backup copy
30 # FASTER : skip comments after a backslash
31 # on transfer to target
32 # fn=’font name’ : replaces the default font ’mono’
33 # by ’font name’
34 # fs=xx : set font size, for example:
35 # fs=10 is default
36 # fc=#rrggbb : set font color, default is
37 # #d5d2c8 (light grey)
38 # bc=#rrggbb : set background color, default is
39 # #343d46 (dark grey)
40 # ac=#rrggbb : set active color, default is
41 # #b43104 (red)
42 # cc=#rrggbb : set cursor color, default is
43 # #b43104 (red)
44 # cw=xx : set cursor width, default is
45 # 0 for block cursor
46 # co=xxxx : set cursor on time in ms,
47 # default is 1000
48 # cf=xxxx : set cursor off time in ms,
49 # default is 0
50 # is=’string’ : overrides the default
51 # include string ’\ include’
52 # default strings: ’include’,
53 # ’#include’,’\ include’
54 # Caution: strings with blanks have to be put in ’ ’
55 # Colors can be named according tkinter: #rrggbb or
56 # a color name
57
58 # end of file

12 Forth Magazine Vierte Dimension 2023/1

Flashing Forth

Flashing Forth
Ingolf Pohl, Wolfgang Strauß

In the article about FEE (see article "FEE - Forth Enhanced Editor" in this issue) it was mentioned that you can easily
load a Forth runtime system, such as Mecrisp, from FEE into the blank target system. Here we would like to describe
the procedure using the Fietje miniboard as an example, which runs with a GD32VF103. Of course the procedure also
works with other GD32VF103 boards like the Longan Nano. The STM32F103 series is supported as well.

Basics

Many modern microcontrollers have their program mem-
ory right on the chip. The common memory technology is
Flash1. The manufacturer delivers his devices initialized,
i.e. all bits of the Flash are set to “1”. Before the Forther
can work with the microcontroller in the usual interac-
tive way, a binary file containing a suitable Forth system
must be “flashed” into the device. In the case of the
GD32VF103 from GigaDevice considered here, flashing a
binary file can be done in different ways:

• Via the JTAG interface (JTAG: Joint Test Action
Group). Special debug hardware is required for this

• Via SWD (Serial Wire Debug), also requires special
debug hardware

• By boot loader using the chip–internal USB hardware
module via DFU protocol (Device Firmware Upgrade)

• By boot loader via the on–chip serial interface
(UART)

The boot loader mode via UART is a good choice, be-
cause we use the required USB–serial converter for the
communication with the Forth after flashing anyway.

Start–up Variants

The GD32VF103 supports three start–up variants, one
of which is selected by the levels of two special pins
(BOOT0, BOOT1) after a reset of the chip. Tab. 1 lists
the variants.

Boot–Pin Level Start–up
BOOT0 BOOT1 Variant
low don’t care Flash
high low Boot Loader
high high RAM

Table 1: Start options

Now the more detailed description of the individual vari-
ants follows:

• Flash: This is later the normal operation. Here the
CPU of the microcontroller starts the execution of the
program in the flash memory. Of course a suitable
firmware (Forth) must have been stored (flashed) in
the flash before.

• Boot loader: This variant is exactly what we need for
flashing. It starts the so called boot loader. The boot
loader is software that the manufacturer of the chip
has placed in a special memory area. This software is
read-only, so it cannot be overwritten accidentally or
intentionally.

• RAM: Here the CPU would start code from RAM.
This variant is not very useful for us, because the con-
tents of the RAM will be random after a cold start2.
This would give a nice crash.

The Boot Loader

Ok, now we are quite a bit further. So we want to use
the boot loader to persuade the chip to accept a binary
file via a normal serial port and write it to its Flash. But
how does the boot loader do that exactly?

The chip tests its pins BOOT0 and BOOT1 directly after
a reset. If levels like in tab. 1, line 2 result, the execu-
tion of the boot loader program starts. But we had that
already.

The first thing to check is on which “channel” data ar-
rives. Channels can be the USB port or a serial interface
(UART). Here we shall assume that data arrives via
a UART. After the first character is received, its time
length is determined and the appropriate baud rate is
calculated and set. Now everything is ready for an in-
teractive communication with the other end, in our case
FEE.

The boot loader has among other things functions for
erasing, writing and reading the flash and for determining
the chip ID and protocol version. With this it is possible
to work comfortably.

If you would like more details, please have a look at
the application note “AN3155”, which can be found at
https://www.st.com

Bill of Materials

For the first loading of a Forth system with FEE and
afterwards of course for interactive development you need

• a PC with Python 3 installed, FEE (Forth Enhanced
Editor)

1Flash: memory that does not lose the information even after the supply voltage is switched off
2Cold start: Start–up of the system after switching on the supply voltage

2023/1 Forth Magazine Vierte Dimension 13

https://www.st.com

Flashing Forth

• a USB–serial adapter (TTL level and VCC at 3.3V);
it is recommended to use a device with the handshake
lines DTR and RTS. With this, FEE can execute
the flashing process automatically. But a “normal”
adapter with only RxD and TxD works too.

• a target system with the microcontroller GD32VF103

• a binary file with a Forth system (Mecrisp Quintus)
for the GD32VF103

Wiring Up the Fietje Board

For a comfortable boot mode switching you need the
connections according to tab. 2 between the USB serial
converter and Fietje Miniboard:

USB Data Fietje
Converter Flow Miniboard

GND — GND
VCC (3,3V) — 3V3 (3,3V)

TxD → RxD
RxD ← TxD
DTR → RSTN
RTS → BOOT0

Table 2: Wiring

Fig. 1 shows the setup in a graphic form:

Figure 1: Schematic

The Fietje Miniboard already has the necessary pull–up
and pull–down resistors at the pins BOOT0, BOOT1 and
RSTN, so that these do not have to be connected for
normal operation. The BOOT1 pin is connected to GND
(low) and therefore does not need to be routed at all.

You can connect the Fietje Miniboard to the USB–Adpter
on a breadboard with a few cables (fig. 2), or contact it
with clamp programming adapters via six pins provided
for this purpose (fig. 3).

Figure 2: Variant “Breadboard”

Figure 3: Variant “Clothespin”

Flashing at Last

Once the connections have been made, the target sys-
tem is powered via USB adapter and can be controlled
by FEE fully automatically or semi–automatically (via
reset button and BOOT0 button, see fig. 1). You call the
activity “firmware flash” in the menu “tools” and FEE
explains on the output in the terminal window what to
do: select the file with the desired Mecrisp, follow FEE’s
instructions. Now it is time to lean back and watch as
FEE creates a backup copy of the current Flash contents,
erases the Flash completely, writes the Flash with the
selected binary file and finally performs a verification for
correct writing — done. When using the handshake con-
trol signals, the target system is then immediately booted
into the Forth and FEE is ready for code development.

Yes, it can be that simple.

At https://forth-ev.de/wiki/projects:fee:start
you can find the project page of FEE. There you can find
the FEE, links and further information.

[Translated to English by Wolfgang Strauß]

14 Forth Magazine Vierte Dimension 2023/1

https://forth-ev.de/wiki/projects:fee:start

First Steps Towards an Astroimaging Control System in Forth

First Steps Towards an Astroimaging Control
System in Forth
Andrew Read

Astroimaging is a modern hobby using small telescopes equipped with digital cameras. Computerized mounts point at
celestial targets and track them during long duration exposures. Setups can be portable equipment in a back–garden,
small homemade observatories, or piers in “for–rent” observatories under excellent dark skies. A common factor is a
local PC (most commonly Windows) accessed via remote–desktop software from inside the warm home, or even from
the other side of the world.

Figure 1: My telescope in Chile

The usual astroimaging software is not especially pleasing
to a person familiar with Forth: unstable GUI interfaces,
intransparent control logic, clunky macro interfaces, prob-
lems solved mainly by guesswork. For exactly these rea-
sons I am motivated to develop a Forth control system
for operating my own astroimaging equipment, which is
located at the Deep Sky Chile hosted observatory (fig. 1).
The goals of the project are, firstly, to develop a logical

and reliable control framework for the individual com-
ponents: the mount, the camera, the motorized focuser,
the motorized filter wheel, the various sensors, and sec-
ondly to develop a domain–specfic language to pursue
astroimaging through a Forth interpreter.

The system components operate quite differently: the
mount (a 10Micron GM2000) is the easiest — a TCP/IP
network device with a plain–text command protocol. The
USB3.0 CMOS camera (an ASI6200) and filter wheel (a
ZWO EFW) are supplied with a C–language SDK. The
USB2.0 focuser (a component of the Takahashi CCA–250
telescope) has an unpublished protocol that will need to
be reverse–engineered, but it is a native USB device not
a COM port.

I started work hands–on, trying to make contact with
the mount. Out of familiarity I chose to work with
VFX Forth on Windows. For TCP/IP communication
VFX gives access to the WinSock kernal with words
TCPconnect, writesock, pollsock, readsock. Looking
at 10Micron.f (listing), words 10u.ask and 10u.tell
communicate text strings with the mount. I wasn’t sure
what to expect from the mount and so 10u.ask was coded
with error checking, a repeating loop and delays from
the very beginning. The extra care was rewarded — the
mount responded and gave its status on the first attempt!

Next I built up a series of “hard–coded” words correspond-
ing one–to–one to 10Micron protocol commands. This
gave me confidence with the protocol and clarified a few
gaps in the documentation. After that the command
words were replaced with three different defining words
(some protocol commands need an input, some do not,
and some make no response).

The mount expects celestial coordinates to be specified
in degrees (–90 to +90) or hours (0 – 23), arcminutes
(0 – 59) and arcseconds (0 – 59). A target on the celestial
sphere requires coordinates in both Right Ascension and
Declination, 6 integers in total. Anticipating the benefit
of interactive control at the Forth interpreter I chose
the simplest possible format: 3 integers on the stack for
each of RA or Dec. $DEC (and $RA, celestial.f) pack
the three integers into the string format required by the
mount protocol.

Turning to the domain specific control language,
MAKE-TARGET (in mount.f) is a defining word for celes-
tial targets. GOTO combines three protocol control words.

2023/1 Forth Magazine Vierte Dimension 15

First Steps Towards an Astroimaging Control System in Forth

Interactive sessions now become possible. Have you seen
the Great Orion Nebula through a telescope? We define
it and point.

(RA) 05 36 25
(DEC) -05 22 33
MAKE-TARGET M42
M42 GOTO

Even at this elementary stage I instinctively prefer to
use the Forth interpreter to the usual software. Typing
a word feels more precise and professional than hunting
through a GUI and pressing buttons. Visibility to the
mount’s own command protocol makes problem solving
well–informed and fast–moving. Overall, Forth encour-
ages new ideas that I try out iteratively and interactively,
saving my progress in Forth definitions and simple include

files, meanwhile building up an engineer’s instinct for the
system.

The next steps will be more challenging: controlling the
focuser will require learning how to approach a native
USB device in VFX Forth. The camera will require mas-
tering the C–language SDK and then interfacing it to
Forth words.

This is an open source project (Ptolemy on Anding’s
GitHub page) and I hope to build a niche community
around the project — if you are interested in astronomy
or in controlling this kind of equipment from Forth, please
get in touch!

I am grateful to Ulli Hoffmann for his ideas and sug-
gestions on this and other projects through our many
discussions.

February 2023 — andrew81244@outlook.com

Listings
1 \
2 \ 10Micron.f - code for controlling the 10Micron mount
3
4 0 value MNTSOC
5 \ value type holding the socket number of the 10Micron mount
6 256 buffer: MNTBUF
7 \ buffer to hold strings communicated with the 10Micron mount
8
9 : 10u.tell (c-addr u --)

10 \ pass a command string to the mount
11 10u.checksocket if drop drop exit then
12 dup -rot (u c-addr u)
13 MNTSOC writesock (u len 0 | u error SOCKET_ERROR)
14 SOCKET_ERROR = if ." Failed to write to the socket with error " . CR exit then
15 <> if ." Failed to write the full string to the socket" CR exit then
16 ;
17
18 : 10u.ask (-- c-addr u)
19 \ get a response from the mount
20 10u.checksocket if MNTBUF 0 exit then
21 0 >R 5 (tries R:bytes)
22 begin
23 1- dup 0 >=
24 while
25 200 ms
26 MNTSOC pollsock (tries len | tries SOCKET_ERROR)
27 dup SOCKET_ERROR = if
28 drop ." Failed to poll the socket " CR
29 else
30 0= if
31 ." 0 bytes available at the socket" CR
32 else
33 MNTBUF 256 MNTSOC readsock (tries len 0 | tries error SOCKET_ERROR)
34 SOCKET_ERROR = if (tries ior)
35 ." Failed to read the socket with error " . CR
36 else (tries len)
37 R> drop >R drop 0 (0 R:bytes)
38 then (tries R:bytes)
39 then
40 then
41 repeat
42 drop MNTBUF R>
43 dup 0= if ." No response from the mount" CR then
44 ;
45
46 : MAKE-COMMAND
47 \ defining word for a 10Micron command
48 \ s" raw-command-string" MAKE-COMMAND <name>
49 CREATE (caddr u --)

16 Forth Magazine Vierte Dimension 2023/1

andrew81244@outlook.com

First Steps Towards an Astroimaging Control System in Forth

50 $, \ compile the caddr u string to the parameter field as a counted string
51 DOES> (-- caddr u)
52 count \ copy the counted string at the PFA to the stack in caddr u format
53 CR 10u.tell
54 10u.ask 2dup type
55 ;
56
57 s" :GR#" MAKE-COMMAND 10u.RA? (--)
58 \ get the 10Micron telescope right ascension in the raw format
59 s" :GD#" MAKE-COMMAND 10u.DEC? (--)
60 \ get the 10Micron telescope declination in the raw format
61 s" :Gstat#" MAKE-COMMAND 10u.status?
62 \ get the status of the mount
63
64 \
65 \ celestial.f - handle and convert between various celestial data formats
66
67 : $DEC (deg min sec -- caddr u)
68 \ obtain a declination string in the format sDD*MM:SS from 3 integers
69 <# \ proceeds from the rightmost character in the string
70 0 # # 2drop \ numeric output works with double numbers
71 ’:’ HOLD
72 0 # # 2drop
73 ’*’ HOLD
74 dup >R
75 abs 0 # #
76 R> 0 < if ’-’ else ’+’ then HOLD
77 #>
78 ;
79
80 \
81 \ mount.f - develop a Forth language to control the mount
82
83 : MAKE-TARGET
84 \ defining word to name a set of coordinates in RA and DEC
85 \ (RA) hh mm ss (Dec) deg mm ss MAKE-TARGET <target-name>
86 CREATE (hh mm ss deg mm ss --)
87 , , , , , ,
88 DOES> (-- hh mm ss deg mm ss)
89 dup 5 CELLS + DO
90 I @
91 -1 CELLS +loop
92 ;
93
94 : GOTO (hh mm ss deg mm ss -- caddr u)
95 \ slew the mount to a target and return the signal from the mount
96 \ <target> GOTO
97 $DEC 10u.DEC 2drop
98 $RA 10u.RA 2drop
99 10u.slew \ return only the final signal from the mount

100 ;
101
102 : PARK (--)
103 \ park the mount
104 10u.park
105 ;
106
107 : STOP (--)
108 \ stop (halt) the mount
109 \ HALT is a VFX multitasking word
110 10u.halt
111 ;

2023/1 Forth Magazine Vierte Dimension 17

Souped Up SBCs

Souped Up SBCs
Rafael Deliano

Most applications are simple. An 8–bit controller is sufficient for them. The main advantage is not, as one might think,
that they have such low material costs, but their low complexity. This avoids errors, and shortens the development
time.

However, some devices have higher requirements. The user then likes to flirt with a new controller that has more of
everything: pins, IO, Flash, RAM, MHz. Everything ready on one chip. The first disillusionment comes when he
realizes that these controllers typically come in packages with pitches smaller than 0.5 mm (e.g. QFPs or BGAs),
which are difficult to solder by hand. Another difficulty is that the pins are a pain to contact with the oscilloscope.

Especially for devices that are built
in single or very small quantities, de-
velopment costs, not material costs,
must be minimized. It is then more
obvious to investigate whether the
small 8–bit controller that one nor-
mally uses can be suitably extended.
For IO and data memory, this is eas-
ily achievable.

CPU

RAM

UART

A/D

digital IO

D/A

Bus

EPROM

CPU

RAM

Microprocessor

UART

A/D

digital IO

EPROM

Microcontroller

Figure 1: µP and µC

Microprocessor

The originally used 8–bit micropro-
cessor (CPU 65C02) on my SBCs had
CPU, memory and IO connected via
a parallel bus (Fig. 1), which is on the
board, externally so to speak, thus
accessible. One had free choice in the
amount and type of memory and IO.

Single–chip controllers (MCUs) have
everything integrated on one chip.
Cheap and small. But the mix of

features is now predefined and cor-
responds to the IC manufacturer’s
ideas of what “typical applications”
might need. Program memory is usu-
ally plentiful, but there is often too
little RAM. Their packages, while
easy to work with, have few pins and
thus a limited number of IO ports.
And if A/D and D/A converters are
integrated, their resolution is usually
not sufficient for measurement func-
tions.

Simulated Bus

Nevertheless, a classic memory
mapped IO can be built with the old
ICs made for microprocessors (Fig. 2).
The bus required for this can be sim-
ulated by software, at least as far as
the controller is supplied with 5V
and one can spare two 8–bit ports,
this is possible.

The selection of ICs for the mi-
croprocessor bus used to be abun-
dant. They make certain applications
much easier. Dual UARTs with inte-
grated deep FIFOs, for example, are
ideal for loggers via RS232 (Fig. 4
and Fig. 7). To get more port pins,
the old LSIs1 are not so attractive
anymore, mostly one is happy with
74HC574 and 74HC(T)541. The typ-
ical application for the external bus
is fast access to 12– to 16–bit A/D
and D/A converters. These analog
ICs can also convert to the ±5V or
±15V, which is often more favorable
for analog technology.

uC

R/W

/CS [4]

ADR [3]

DATA [8]

IO

Figure 2: Controller extended with par-
allel bus

Figure 3: Dual Ported RAM

Figure 4: XR16C2850 Dual UART

Dual Ported RAM

The advantage of the FIFO is that
it has no address pins and thus the
pin count remains low. With this
RAM, however, both busses are com-
plete and double. The design is then
with modest 2 kByte already a bulky
DIL48. The classical function was

1LSI — Large Scale Integration

18 Forth Magazine Vierte Dimension 2023/1

Souped Up SBCs

the fast connection of two micropro-
cessors via shared RAM. Today, this
will only be useful for controllers in
special cases. An obvious application
is still the EPROM simulator for 2716
(Fig. 3). For setups with retro CPUs
like 4004 and 8008 FIFOs are worth
recommending even today.

uC

R/W

ADR [11]

DATA [8]

dual
port

RAM

/R

ADR [11]

DATA [8]

uP

"EPROM"

Figure 5: Application Dual Ported RAM

FIFO

With measurement data, one often
has the problem that only short, but
very fast sampling is required. The
controller itself is too slow for this.
That is a useful application for old
FIFOs. This kind of RAMs are still
commercially available in sizes from
2 kByte to 32 kByte with access times
of about 35 nsec also in DIL.

CCDs2 are a typical application in
combination with an 8–bit Flash A/D
converter. Logging fast binary bus
signals from e.g. JTAG debug inter-
faces is also a common application. A
controller acting as a logic analyzer
not only samples raw bit patterns,
but can also flexibly decode the log
later.

uC

/R

DATA [8] FIFO
RAM

/W

Flash
A/D

Ain

empty full

kHz MHz
read Burst write Burst

Figure 6: Application FIFO

Serial Bus

Most controllers have hardware sup-
ported serial interfaces led to the out-
side, like SPI or I2C. The fact that
these only need a few port pins is
an advantage, reduced speed is the
disadvantage. I2C is somewhat sus-
ceptible to interference due to the
bidirectional data line with pull–up

resistor, but needs fewer pins than
SPI. With SPI, on the other hand,
the signal can also be routed via a
ribbon cable at reduced clock speeds.
This offers advantages in the mechan-
ical setup, if one needs connections
from a horizontal main board to the
board with control elements on the
front panel. This is because the lat-
ter often have to be oriented at a
user-friendly angle (Fig. 9).

uC

/R

DATA [8]

RXD
Dual UART

FIFO UART

FIFO UART

TXD

Figure 7: Application RS232 Logger

Figure 8: MCP23S17, a serial port ex-
pander

Figure 9: Ergonomics for devices

Memory

The traditional application has al-
ways been small serial EEPROMs.
Even if the controller has internal
EEPROM today, many applications
can still be found. E.g. many arith-
metic functions can be represented
with good resolution by interpolated
tables. Because these tables are

memory–intensive, but the Flash in
the controller is better used for pro-
gram code, a 128 kByte SPI EEP-
ROM 25LC1024 is a reasonable ap-
plication for this.

Today, the alternative to the EEP-
ROM is often the FRAM. For 5V
there is the FM25W256 (32 kByte)
in SOIC8. The advantage over the
EEPROM is that they can be writ-
ten much faster. That means, if you
detect a voltage drop of the supply in
time, you can save the data from the
RAM into the non–volatile FRAM.

In the past, people were used to hav-
ing plenty of RAM available on mi-
croprocessors. For some applications
this is absolutely necessary. A SPI
SRAM 23LC1024 operates with 5V
and provides 128 kBytes of RAM.

The access to this serial memory in
the 8–pin package is only medium
fast, but in many applications the
software accesses the external mem-
ory relatively seldom and there is
then almost no disadvantage in
speed.

Ports

Nowadays there are also SPI port ex-
tensions, like the MCP23S17 (Fig. 8),
which offer bit programmable pins
like in the microcontroller. However,
traditionally the MSI3 shift registers
like 74HC595 or 74HC165 are used
for IO.

Coprocessor

Nevertheless, there is more than just
simple IO or memory that can be
added to your humble “8–bitter”. ICs
with more complex functions have
also become temptingly inexpensive
today, e.g. the floating point copro-
cessor AM9511 or the decoder for bar-
code reading pens HBCR2211 or the
motor controller LM629. These de-
vices save development time for soft-
ware and enable functions that would
otherwise be out of reach for 8–bit
CPUs.

[Translated to English by Wolfgang
Strauß]

2CCD — Charge Coupled Device, light–sensitive sensor, e.g. for cameras
3MSI — Medium Scale Integration

2023/1 Forth Magazine Vierte Dimension 19

Booting Programs from Disk

Booting Programs from Disk
Rafael Deliano

With PCs it is common practice to load a suitable test program when it is needed. With small controllers this is not
usual. But if a cable tester needs a large number of suitable short test programs for a large number of cables, it is a
very neat solution to supply the programs on the connector adapters at the same time. This is easy to implement in
Forth.

The first generation V1.0 of the ca-
ble tester (Fig. 1) had the GP32 con-
troller with an 8–bit A/D converter
and little RAM. And as an option
on the rear a pluggable board with
EEPROMs for configuration (Fig. 3).
This was cumbersome and therefore
never used. In addition, it turned
out that configuration via data ta-
bles was not sufficient. Each cable
needed its own small program after
all.

Figure 1: Cable tester with 64pin socket

Figure 2: Cable adapter plugged in

Figure 3: V1.0 with data board plugged

It was easier to place wire jumpers on
the adapter boards, read them, and
then use that information to start the
correct test program (Fig. 2). As the
number of cable types increased, the
program memory filled up. FORTH
programs are short (Tab. 1), but it
adds up. In addition, board identifi-
cation became difficult because the

wire jumper codes were often ran-
domly chosen.

Cabel name Bytes
ROHR–MIL 1239
CABLE–560 395
MULTI–MIL 1382
SINGLE–MIL 654
506–50pol 389
SQG–neu 703
506–ODU 350
Main program 7042

Table 1: Memory map V2.0

At this point, the transition to V2.0
had already been made using the
AW60 controller. The higher reso-
lution of its 10–bit A/D converter
also allowed a more accurate cable
resistance metering. It also had more
RAM, of its 2 kBytes, 1.7 kBytes
are free. The Von Neumann CPU
68HC08 can run software there. At
least the short programs that are
needed for this application.

FFFF

8000

0070

086F

AW60

RAM

086F

0170

FLASH

FORTH
System

RAM EEPROM
06FF

0000

FLASH
06FE Check-

sum
hhhh JMP, 06FB Vector

086F

0170

Program

Figure 4: Memory map V3.0

The idea was to place the memory
for this directly on the PCB of the
cable adapter. The originally used
64pin connector1 did not occupy the
middle row of pins (Fig. 1). This al-
lowed an upgrade to the 96pin socket,
which makes an additional 32 pins
available. Enough for the connection

of the memory. A serial EEPROM
25LC256 is used. SPI needs more
pins than I2C, but has cleaner sig-
nals. Fast booting is therefore less
critical. The pinout on the connector
is matched to a layout for the stan-
dard SO8 footprint of the EEPROM
(Fig. 5) and is so simple because the
cable adapter PCB is almost always
single layer. The circuit there has
only two components (Fig. 6).

Figure 5: EEPROM

25LC256

5V

/WP
5VMISO

/CS

5V

1M

SCLK

MOSI

PC6

PD1

PD2

PD3

AW60

Cable tester Adapter PCB

100nF

Figure 6: Schematic EEPROM

Software

This is problem–free with the simple
compiler of nanoFORTH. Its variable
>C normally points to free program
memory in Flash. It is redirected to
RAM at address 0170h and compiles
there. The program can be executed
immediately for tests. But of course
it is not reset–proof. This requires
copying the 1.7 kByte block to the ex-
ternal EEPROM. A simple additive
16–bit checksum is also created and
a program start vector is initialized.

1These DIN 41612 series PCB backplane signal connectors are wear resistant, rugged and have a long mating cycle life.

20 Forth Magazine Vierte Dimension 2023/1

Booting Programs from Disk

Run

After the reset the system checks
whether an external EEPROM is ac-
cessible, copies the data block from it
into RAM and calculates the check-
sum at the same time. If everything
is correct, the program is started via
the vector.

Cabel Adapter

Theoretically, the manageable num-
ber of old adapter PCBs could still
be used. However, the old soft-
ware structure would have to be
maintained in parallel. But that’s
unattractive, and it is better to avoid
this complexity. Supporting legacy
systems rarely pays off.

V2.0 V2.0

V3.0 V2.0

V3.0 V3.0

Cable
tester

Adapter
PCB Cable

adapter
In between

Figure 7: Configuration

Figure 8: Adapter with serial EEPROM

Re–layout of the old boards, this
time with EEPROMs, is therefore
the cleanest solution and is the long–
term goal. The short–term alterna-
tive, however, is an adapter that only
contains the memory (Fig. 7, cen-
ter of image; Fig. 8). However, one
would have to build dozens of them,
not very pleasant. Not elegant, but
more economical, is an adapter with
8 EEPROMs (Fig. 7, bottom of im-
age), each selected by a jumper at its
/CS pin. So you can convert all old
adapters with only a few boards. Dis-
advantage: The adapters have con-
nectors as well, so that an additional
contact resistance occurs, which has
a slightly negative effect on the mea-
sured values.

Background

Cable production takes place in most
electronics companies, but their test-
ing is neglected. Also, because af-
fordable devices are no longer com-
monly available on the market. Do–
it–yourself helps. The circuit is not
complex, neither is the software with
its 8 kBytes.

The trick was, that I took a good,
but meanwhile obsolete device as a
starting point: the WK2 from WEE
GmbH, a company specialized in that
[1] (Fig. 9). As Newton put it, “If I
have seen further, it is by standing
on the shoulders of giants.”

Figure 9: WK 2 (1989 – 1993)

Mine is not a commercial product,
but is now used in two companies for
batch testing in production. Since
all PCBs of the first version are now
used up, the new production had to
be started. A reasonable time for the
upgrade.

Finally a look into the case of the
PCB version V1.0 with the GP32
SBC to show how these SBCs are
integrated into devices (Fig. 10).

Figure 10: Inside view of the cable tester
V1.0. Square board on the right in
the center of the picture: SBC with
nanoFORTH on GP32. Plugged in top
right: data board with serial EEPROMs.
On the left the array of 74HC4051 mul-
tiplexers for wire measurement.

[1] www.weetech.de/unternehmen/
geschichte WK 2 (1989 – 1993)

[Translated to English by Wolfgang
Strauß]

2023/1 Forth Magazine Vierte Dimension 21

www.weetech.de/unternehmen/geschichte
www.weetech.de/unternehmen/geschichte

Sculpting Forth for SPI Flash

Sculpting Forth for SPI Flash
Michael Kalus

The other day there was an opportunity to get a closer look at these small external Flash data storage devices on the
SPI bus. A friend had the problem that his copier for the SPI Flash chips was broken. He lives in the USA and has a
small production of boards, which he sells quite well. What to do? A small MCU, noForth and two sockets = Flash
copier. Shouldn’t be that hard, right?

But the Lord God put sweat before success. Even if
the individual steps were not so difficult, sometimes it
went steeply uphill. But once you have climbed the SPI
highlands with Forth, you can move forward comfortably,
wandering here and there with pleasure until you have
roamed all the corners. Interactive as Forth is, it invites
you to explore the whole landscape — that’s why I use
it.

Figure 1: At the top of the picture you see the audio board.
The two DIP8 are the Flashs. To the left is the MCU with
noForth. Everything else is audio stuff; it is not needed
for copying. Below in the picture my antique programmer
launchpad, at the same time USB–serial converter.

Hardware

The setup was simple. The board of the friend already
had two sockets for the SPI Flashs and the MSP430G2553
from Texas Instruments (fig. 1).

The MCU now got the noForth instead of its C program.
A couple of serial Flash memories of the type W25X40CL
from Winbond in the size 4MBit (512KByte) for trying
out in addition. One of the two SPI sockets held the
Flash original, the other got the empty chip for the copy.

The SPI bus turned out to be completely uncritical at
such a short distance of a few centimeters. The two serial
lines, data input and output, are handled by the chips
on both sides of the lines on their own. The MCU is
the master, the Flashes are slaves. The clock is done by
the master — Serial Clock, CLK. All this is done by the
hardware modules. Once initialized, the SPI protocol
runs automatically, bit banging not needed this time.

But you have to take care of the wires to select the chips.
Two I/O bits from one of the MCU ports, which can be
set high or low, were sufficient for this. Each chip got
its own /CS, and the job was done.

How did I know that? I had no idea at all. So first you
browse through the papers that are out there.

Dokuments

The Winbond data sheet / user manual left no questions
unanswered. Neither did the manual for the MCU. And
noForth is also well documented. That’s the way to work.
noForth has a small SPI package for this MCU. That was
a good start to get familiar with the SPI hardware driver
of the MCU. So a first test was successful: reading the
ID of a SPI Flash.

I soon learned that these SPI Flashes can handle a whole
set of commands that make your life easy regarding writ-
ing and reading the Flash.

Toolbox

This was a Windows 10 project. That’s what the friend
wanted. The programmer’s quill has therefore been
Notepad++, which is a fine editor. The MCU itself
is connected to the USB–serial converter and that links
to TeraTerm, a halfway usable terminal simulator when
working with Forth. I use it, because there is not much
better — or there wasn’t so far. And I hope every time

22 Forth Magazine Vierte Dimension 2023/1

Sculpting Forth for SPI Flash

that the Forth community will develop something more
suitable.

The TeraTerm is forth–dumb, yes, unfortunately. But
what to do? So it has line–by–line transmission, at the
end of the line there is blind waiting for the noForth, so it
can process the line and on it goes. Since the individual
Forth test snippets are always quite small, this works.
And the copy&paste feature of TeraTerm is ok. If you
have a larger piece of Forth source code ready, the file
download also works quite well.

noForth can be loaded into the MCU with the FET–Pro–
430–LITE programmer from Elprotronic — a very reliable
tool. The UniFlash from Texas Instruments also does the
job. But since I already know the other programmer and
have it around, well, I stick with it.

Used was noForth–mcv. The m means “MSP430”1, c
stands for “compact” and v for “vocabularies”. You can
get the noForth image as an Intel hex file from the devel-
opers website [1]. I had a MSP–Launchpad to use as a
programmer available, so no problem [2].

Software and Testing

You can find them in the listing. noForth, small as it is,
knows marker, so that you can quickly reset it to its pro-
tected core again and again. The software experiments
do not always run correctly at the first attempt, and the
program garbage from the trial phase should not remain
in the program memory of the MCU. noForth has a small
library, called tools, which you can load and use for the
development. There is .s in it, words and such. Later
you can get rid of it. There was enough free space in my
project, so I kept it.

How to initialize the peripheral module for SPI in the
MSP430G2553 is kindly shown in a small noForth library.
I took this library, matched the ports to the given board
and was ready to send commands to the SPI memory.

Winbond writes:

“The instruction set of the W25X40CL consists of
twenty basic instructions that are fully controlled
through the SPI bus (see Instruction Set table).
Instructions are initiated with the falling edge of
Chip Select (/CS). The first byte of data clocked
into the DI input provides the instruction code.
Data on the DI input is sampled on the rising edge
of clock with most significant bit (MSB) first.”

Simple, isn’t it? You think so, but first you have to design
tests to verify all functions. This procedure is described
in detail in the listing of the tests. The principle is always
the same: first think about what could be considered as
proof of correct functioning, write a Forth word for it
and then modify it until it not only runs well, but also
looks good. Then move on to the next.

That’s the beauty of interactive Forth programming:
Forth can be modeled, like clay in your hands. This
makes programming an aesthetic modeling activity. Each
Forth word that is created is a lump of the sculptor’s
building clay. It is pushed into shape until it sits correctly
in the overall work.

So let’s get to work. Checking the /CS lines is done with
the multimeter, is the H or L level there as it should be?
This is a test step, so there is a pair of Forth words for it:
csup and csdown. And because either one or the other
Flash is to be selected, the mask CS determines whether
IC3 or IC4 is meant.

This allows phrases like:

IC3 csdown ... csup

And then afterwards:

\ read device ID & Manufacturer
IC3 ID (-- M ID)
IC4 ID (-- M ID)

With this it can already be seen whether the SPI Flashes
respond and the whole SPI works.

An internal test of the SPI hardware is kindly already
provided by the MCU manufacturer. There is the pos-
sibility to put the module into an internal loop: In this
mode the byte you just wrote to the transmit register
appears directly in the receive register. This way you can
test your send and receive Forth words. After all, what
goes out on the transmit line must arrive on the receive
line. The word

SPI (u1 -- u2) \ Master SPI routine

can be tested this way.

After it is clear that SPI bus and /CS lines work cor-
rectly, it is a pleasure to see that the Flash chips accept
commands and answer them well. They willingly deliver
their identification numbers “Device ID & Manufacturer”
on the data stack. .s shows this immediately — gee,
Forth is nice.

Of course, the maneuver was a bit naive. But luck is
a part of the game: noForth is slow enough to give the
SPI Flash time to settle down after the /CS.2 So timing
was not a problem with such a simple request to the
Flash like, “What is your ID?” Only after the INIT it
needs an extra 5ms once at the very beginning until all
components are operational.

From then on it is a walk in the SPI high (language) plain
to translate the commands for the SPI Flash into words.

: status (-- u)
csdown

05 >spi \ read status register
spi>

csup ;

1MSP430G2553 MCU, Texas Instruments
2 /CS Active Setup Time relative to CLK is 5 ns according to the datasheet of the SPI Flash

2023/1 Forth Magazine Vierte Dimension 23

Sculpting Forth for SPI Flash

: ID (-- M ID)
csdown

90 >spi \ read device ID
0 0 >adr24 spi> spi>

csup ;

Sent are one after the other the instruction, an address
and then data, either back or forth.

The special thing about SPI: While the master side is
writing on the send data line, the module is already re-
ceiving bytes from the Flash on the other data line. This
was a bit confusing for me in the beginning. But you
soon learn when the received bytes are just dummies that
you can drop, and from when valid stuff comes.

The Flash instructions are all only one byte long, the
addresses 3 bytes — 24 bits with the Flash size that was
used here — and the data comes byte by byte once again.

For the interactive way of working, the send routine >spi
is already good enough to send one instruction byte to
the Flash. The following address is sent with >adr24
and the data again byte by byte. Start and stop of the
transmission are also Forth words: csdown for the falling
edge to start a sequence and csup to end it. The timing
for this is already included in spi: it waits until the busy
flag in the send and receive registers indicates that the
chip is ready.

Well, that’s about all I would have to say about this. To
show how I did it and that it was fun.

You can find out the rest yourself by looking into the
source code.

User Interface(s)

The blockcopy is the real workhorse, you’ve probably
seen it there. The management of the sections up to the

copyapp, which is based on it, is nothing more than a
mechanism to make the user happy. After all, that was
the real goal: to have a standalone board that copies
Flashes. Plug in the Flash, turn it on to copy it, a little
“Blinken Light” for human orientation, turn it off again,
take out the copied Flash, and do it all over again. No
more buttons, just the one LED — the minimal equip-
ment of the board, “as is”.

But since the board can also be operated via a terminal
using the serial interface, a second user level was added:
The command line accepts copy+ and copy-. If you set
the report value, the heap of wire talks to you, otherwise
it copies silently.

But this already has nothing to do with the SPI, this is an
extra that other users probably want to have differently.
How to separate the business code cleanly from the user
interface and one’s language3, i.e. localized, I still have
to find out. In Gforth that’s already possible4, noForth
doesn’t support that yet, as far as I know. And if such
a very small Forth can do that at all, also needs to be
researched.

By the way, the copy takes 15 s. For comparison: The
Flash internal complete chiperase takes 12 s. And copy al-
ready does the verification and “talks” to the user, which
slows it down. Not bad, right?

Ideas to prevent confusion of source and target are also
welcome. For now, this is solved primitively: The source
is in the socket IC4 and only to IC3 can be written.

Have fun with Forth.

[Translated to English by Wolfgang Strauß]

Links

[1] https://home.hccnet.nl/anij/nof/noforth.html

[2] https://www.ti.com/tool/MSP-EXP430G2ET

Listings

Of course, the tools of noForth have to be loaded first.
To avoid bloating the magazine, they are not listed here.

spi

1 \ spi for noForth m(cv) -- september 2022
2 \ MSP430G2553
3
4 tools\
5 hex
6 : spi- 01 69 *bis ; \ UCB0CTL1 stop bit set
7 : spi+ 01 69 *bic ; \ UCB0CTL1 released --> run
8 : MASTER-SETUP
9 spi-

10 \ ports general i/o
11 A0 22 *bis \ P1DIR P1.5&7 output

12 40 22 *bic \ P1DIR P1.6 input
13 \ special function pins
14 E0 26 *bis \ P1SEL P1.5+6+7 is SPI
15 E0 41 *bis \ P1SEL2
16 69 68 *bis \ UCB0CTL0 Clk=high, MSB first,
17 \ Master, Synchroon
18 80 69 *bis \ UCB0CTL1 USCI clock = SMClk
19 08 6A c! \ UCB0BR0 Clock 16Mhz/8 = 2 MHz
20 00 6B c! \ UCB0BR1
21 00 6C c! \ UCB0MCTL Not used must be zero!
22 E0 21 *bis \ P1out P1.5&6&7 set
23 spi+ ;
24
25 : SPI (u1 -- u2) \ Master SPI routine
26 begin 8 3 bit* until 6F c! \ IFG2 TX?
27 begin 4 3 bit* until 6E c@ ; \ IFG2 RX?
28 : >SPI (u --) spi drop ;
29 : SPI> (-- u) 0 spi ;
30

3Uncle Bob: “Clean Code”
4Bernd Paysan; Internationalisation mit Gforth; issue 4d2022–04, p. 10 ff

24 Forth Magazine Vierte Dimension 2023/1

https://home.hccnet.nl/anij/nof/noforth.html
https://www.ti.com/tool/MSP-EXP430G2ET

Sculpting Forth for SPI Flash

31 shield SPI\
32 chere u. \ memory check
33 (finis)

copy

1 \ handle flash memory 20221020mk
2 \ Board: BC130129 DB
3 \ Any other board will do, breadboard is fine too
4
5 \ Copy v06 is to use vocabularies.
6 \ EXTRA words are the factorized parts.
7 \ Copy V05 with/without report and copyapp
8 \ TIB holds 80 characters,
9 \ longer lines will be cut!

10
11 SPI\ \ marker from file: SPI.f
12
13 hex fresh \ see note at the bottom.
14
15 value cs \ mask
16 : IC3 80 to cs ; \ mask P2.7 = IC3
17 : IC4 40 to cs ; \ mask P2.6 = IC4
18
19 v: extra definitions
20 : csup CS 29 *bis ; \ P2out deselect Flash
21 : csdown CS 29 *bic ; \ select Flash
22
23 v: forth definitions
24 : init \ prepare chips and control lines
25 master-setup \ SPI
26 \ ports
27 00 29 c! \ P2OUT P2out is all low
28 FF 2A c! \ P2DIR P2dir all output
29 00 2E c! \ P2SEL P2 is general i/o
30 11 22 *bis \ P1DIR P1.0&4 out
31 \ enable flashs
32 11 21 *bis \ P1out P1.0&4 high
33 \ = hold high, enable both Flashs
34 C0 29 *bis \ P2out P2.6&7 high
35 \ = deselect both Flashs
36 5 ms \ allow Flashs to initialize
37 ic4 ; \ IC4 is master Flash
38
39
40 \ some "keep the user happy" stuff
41 : holdH 11 21 *bis ; \ both H
42 : holdL 11 21 *bic ; \ both L
43 : bliz holdh 50 ms holdl 50 ms holdh ; \ LED
44
45 V: extra definitions
46 : beph 20 29 *bis ; \ P2.5 high
47 : bepl 20 29 *bic ; \ P2.5 low
48 : bep beph 1 ms bepl 1 ms ; \ 1 beep wave
49 v: forth definitions
50 : beep (--) \ short beep of 500Hz
51 100 0 do bep loop ;
52
53
54 \ Some read instructions
55 V: extra definitions
56 : >adr24 (adr24 --) \ send 24bit
57 \ adr24 = double-cell number (adrL adrH --)
58 >spi dup 8 rshift >spi >spi ;
59 : dummies (n --) \ send n dummy bytes
60 0 ?do 0 >spi loop ;
61
62 v: forth definitions
63 : ID (-- M ID) \ read device ID & manufacturer
64 csdown 90 >spi 0 0 >adr24 spi> spi> csup ;
65 : status (-- u) \ read status register
66 csdown 05 >spi spi> csup ;
67
68 v: extra definitions

69 : read (adr24 --) \ set read address
70 csdown 03 >spi >adr24 ;
71
72
73
74 \ write instructions
75 : ready? (-- f) \ get busy status of Flash
76 status 1 and 0= ; \ tested
77 : welH \ set write enable bit
78 csdown 06 >spi csup ;
79 : welL \ reset write enable bit
80 csdown 04 >spi csup ;
81
82 v: forth definitions
83 : chip3erase \ set all memory to erased state $FF
84 ic3 \ never erase IC4
85 welH csdown 60 >spi csup
86 begin ready? until ;
87
88 v: extra definitions
89 : sector3erase (adr24 --)
90 ic3
91 welH csdown 20 >spi >adr24 csup
92 begin ready? until ;
93
94 : page (adr24 --) \ write to page
95 welH begin ready? until
96 csdown 02 >spi >adr24 ;
97 \ endpage is csup
98
99

100 \ copy
101 hex
102
103 \ Organisation of the Flash memory
104 \ adr24 = adrL adrH = SPBI 000G
105 \ mit:
106 \ G = seGment number
107 \ S = Sector number
108 \ P = Page number
109 \ B = Block number
110 \ I = Byte number
111 \ There are two address pointers:
112 \ The "Flash address pointer" contains the numbers
113 \ of the sectors down to the bytes.
114 \ The parent segment has its own pointer.
115
116 value fap (-- fap) \ Flash address pointer
117 value sep (-- sep) \ Flash segment pointer
118
119 (*
120 The fastest copy would be to have SPI 2x, read
121 from one flash and write to the other right away.
122 This board was designed so that both sockets were
123 on one SPI bus. The limited RAM in the MCU allowed
124 only a small buffer for read bytes - at least this
125 way the copy process didn’t get too slow.
126 A second small buffer is used for verification.
127 What has been written is read back into this
128 buffer and compared with the first one.
129 Copying errors are detected early this way.
130 *)
131
132 here 10 allot constant buffer0 \ 16 bytes buffer
133 here 10 allot constant buffer1 \ 16 bytes buffer
134
135 value buc (-- buc) \ buffer character counter
136
137 \ Reading and writing of the buffers
138 : buc0 (--) 0 to buc ;
139 : buc+ (--) buc 1+ f and to buc ;
140 : >buf0 (c --) buffer0 buc + c! buc+ ;
141 : buf0> (-- c) buffer0 buc + c@ buc+ ;
142 : >buf1 (c --) buffer1 buc + c! buc+ ;
143
144 : fapsep0 (--) \ for convenience

2023/1 Forth Magazine Vierte Dimension 25

Sculpting Forth for SPI Flash

145 0 to fap 0 to sep ;
146
147 \ Set important Flash addresses
148 : setblock (i --)
149 f and 10 * fap ff00 and + to fap ;
150 : setpage (i --)
151 f and 100 * fap f000 and + to fap ;
152 : setsector (i --)
153 f and 1000 * to fap ;
154 : setsegment (i --) f and to sep ;
155
156
157 \ The "Report" feature was added later. It also
158 \ belongs to the "keep the user happy" category
159 \ and does not add anything to the copy function.
160 value report
161
162 \ The feature "Block=FF" was also added later.
163 \ This uses a property of the master Flash: Its
164 \ segments are not fully written. As soon as a
165 \ block is "FF", nothing more comes in the
166 \ segment, the copy function can go to the next
167 \ segment.
168 value FFsum (-- n) \ sum of bytes in the block
169 : FFcnt (x -- x) dup +to FFsum ;
170 : ff? (-- f) FFsum ff0 = ;
171
172 : rbuf (--) \ read current Flash block
173 0 to FFsum
174 fap sep read buc0
175 10 0 do spi> FFcnt >buf0 loop csup ;
176 : wbuf (--) \ write current Flash
177 ff? if exit then
178 fap sep page buc0
179 10 0 do buf0> >spi loop csup ;
180 : bbuf (--) \ read back written Flash
181 ff? if exit then
182 fap sep read buc0
183 10 0 do spi> >buf1 loop csup ;
184
185 \ LED pulses indicate an error
186 : sos (--)
187 3 0 do bliz loop 200 ms
188 3 0 do bliz 100 ms loop 200 ms
189 3 0 do bliz loop 500 ms ;
190 : buf<> (-- f) \ f = true if different
191 ff? if exit then
192 buffer0 10 buffer1 10 s<>
193 if begin sos again then ;
194 \ Yes, we terminate by "power off"
195
196
197 \ Now, let us copy for real
198 : blockcopy (i --) \ copy current block
199 setblock
200 ic4 rbuf
201 ic3 wbuf bbuf buf<> ; \ buf<> is verification
202
203 : pagecopy (i --) \ 0xFF &256 bytes
204 setpage
205 report if ." block " then
206 10 0 do
207 ff? if unloop exit then
208 report if i . then
209 i blockcopy loop ;
210
211 : sectorcopy (i --) \ 0x1000 &4096 bytes
212 setsector
213 10 0 do
214 ff? if unloop exit then
215 report if cr ." page " i . then
216 i pagecopy loop ;
217
218 : segmentcopy (i --) \ 0x10000 &65536 bytes
219 setsegment

220 10 0 do
221 ff? if unloop bliz exit then
222 report if cr ." sector " i . then
223 i sectorcopy loop bliz ;
224
225 : flashcopy (--) \ 0x80000 = &524288 bytes
226 fapsep0
227 8 0 do
228 report if cr cr ." segment " i . then
229 0 to FFsum i segmentcopy loop ;
230
231
232 shield flash\
233
234 (* And finally the main word: COPYAPP
235 This will be the "turnkey app", it starts after
236 reset. Actually FLASHCOPY is the copy function.
237 But then you can’t see that the board is working
238 correctly. So you have to use "blinken lights"
239 and because the board has only one LED, this one
240 has to do the job. Oh yes, the board can also
241 make a sound.
242 *)
243
244 \
245 v: forth definitions
246 hex
247 : copy (--) \ blink while copying entire flash
248 \ stop watchdog: noforth itself does that
249 \ 5A80 120 !
250 report if
251 cr ." start copying and wait for the system
252 to stabilize ... " then
253 500 ms init 0 to FFsum
254 bliz bliz bliz \ keep the user happy
255 report if ." done" then
256 report if cr ." chip-erase ... " then
257 chip3erase
258 bliz bliz
259 report if ." done"
260 cr ." copy 8 flash segments, "
261 ." skip empty (0xFF) blocks." then
262 flashcopy
263 report if cr cr ." finis " then
264 beep ;
265
266 : copy+ (--) \ copy with report
267 true to report copy ;
268
269 : copy- (--) \ copy without reporting
270 false to report copy ;
271
272 : copyapp (--)
273 copy-
274 \ ready -
275 \ now we bliz back and forth (pun intended)
276 holdL 200 ms begin bliz again ;
277
278 shield copy\
279 \ ’ copyapp to app \ undo: ’ noop to app
280
281 : .. (adr24 --) \ Test: see some 32 bytes of IC
282 read
283 cr 10 0 do spi> . loop
284 cr 10 0 do spi> . loop
285 csup ;
286 \ passed: 20221018mk
287
288 fresh
289 freeze \ application done 20221020mk
290 init chere u. \ check memory: ok
291 (finis)
292
293 (* Notes:
294 Only in noForth with vocabularies:
295 EXTRA is a vocabulary with non-standard useful

26 Forth Magazine Vierte Dimension 2023/1

Sculpting Forth for SPI Flash

296 words.
297 INSIDE is a vocabulary with internal words.
298 : FRESH (--)
299 only extra also forth also definitions ;
300

301 fresh order ←↩ (FORTH FORTH EXTRA ONLY : FORTH)
302
303 When noForth starts, FRESH is executed.
304 .VOC (wid --) \ show the vocabulary name.
305 ’wid’ is a number in the range 0..127
306 *)

Glossar

1 \ handle flash memory for BC130129 2022-10-17
2 \ Glossar of usable forth words
3 \ Type WORDS to get all forth words.
4 \ Type EXTRA WORDS to get sub-words too. See source code for use of extra words.
5
6 cs (-- mask) \ value of IC mask
7 Example:
8 cs . 80 OK.0
9

10
11 IC3 (--) \ set cs mask to P2.7 = IC3
12 IC4 (--) \ set cs mask to P2.6 = IC4
13
14 init (--) \ prepare chips and control lines
15
16 beep (--) \ short beep of 500Hz
17
18 ID (-- M ID) \ read device ID & Manufacturer
19 Example:
20 init ic4 id .s (EF 12) OK.2
21
22 status (-- u) \ read status register.
23 Example:
24 init ic3 status .s (0) OK.1
25
26
27 chip3erase (--) \ set all memory of flash in IC3 to erased state $FF.
28 copy (--) \ copy entire flash from IC4 to IC3.
29 copy+ (--) \ copy with report. Same as: true to report copy
30 copy- (--) \ copy without reporting. Same as: false to report copy
31
32
33 copyapp (--) \ use this as turnkey app
34 Example:
35 ’ copyapp to app \ undo: ’ noop to app
36
37
38 .. (adr24 --) \ Testing: look at 32 bytes of IC
39 Example:
40 hex init IC3 dn 12000 .. \ look at content of flash in IC3 at address 0x12000.
41 \ adr24 is a double number:
42 @)dn 12000 OK.2
43 @).s (2000 1) OK.2
44
45 (finis)

2023/1 Forth Magazine Vierte Dimension 27

Internationalization With Gforth and ΜΙΝΩΣ2 — Part 2

Internationalization With Gforth and ΜΙΝΩΣ2 —
Part 2
Bernd Paysan

Beyond the translation issues discussed in Part 1, there are a number of other topics that are part of successful
internationalization and localization, most of which require solutions outside of standards. The article builds on private
communication with Claus Vogt, who shared his experiences with the author in a longish and unstructured e-mail,
and on a lecture on ΜΙΝΩΣ2 , in which various typesetting aspects were discussed.

Database or CSV for Translators?

Translators are, as already noted in the first part, typi-
cally rather not programmers. The first part therefore
contained the following text:

„Using a table may be easier for maintaining pro-
grams — especially because the CSV table itself
can then be maintained with a spreadsheet pro-
gram; something many people are proficient at.“

Claus Vogt fully agreed with this view — for a long
time he too has been using CSV files into which his trans-
lators enter the translations. In addition to the program
text, it is also possible to insert other columns there that
make life easier for the translator and may also be useful
for automated insertion of the texts in the right place.
For example, Claus has a „Context“ column that contains
the identifiers of the UI elements to which the texts be-
long. The translator learns from this, for example, on
which kind of control element a text is placed, and can
choose a short, concise translation for a button, and a
longer, more precise one for a text field. The program
can resolve possible ambiguities and reliably insert the
respective translation into the appropriate UI element.
Comments that are not to be translated can also go into
a separate column; comments as part of the program text
end up quite certainly in the translation as well.

Based on these considerations, Gforth has now got a CSV
importer, which can then also be used for loading trans-
lations. This importer is found in the current developer
version in the file csv.fs and has a single word that is
of interest to the user:

READ-CSV (addr u xt --)

which reads the file with the name in the string addr u ,
and passes each field to xt (addr u col line --) ,
along with the column (starting at 0) and line (starting
at 1) of the field.

Based on this, a new word is then defined in i18n.fs:

LOCALE-CSV ("name" --)

then loads the specified CSV file to populate the transla-
tion database, with the first line containing the respective
locales, and the rest containing the corresponding texts.

Unicode, Fonts and Writing Systems

The founders of the Unicode Consortium assumed that
the approach for Western languages of simply assigning
a code point in a character set for each character could
simply be transferred to the character sets in the rest of
the world. This would create a single, much larger font,
which would then be addressed with a maximum of 16
bits instead of just 8, and that would be it.

“Unicode gives higher priority to ensuring utility
for the future than to preserving past antiquities.
Unicode aims in the first instance at the characters
published in modern text (e.g. in the union of all
newspapers and magazines printed in the world
in 1988), whose number is undoubtedly far below
214 = 16, 384. Beyond those modern–use charac-
ters, all others may be defined to be obsolete or
rare, these are better candidates for private–use
registration than for congesting the public list of
generally–useful Unicodes.” — Joseph D.
Becker, [1]

The source, by the way, includes a table of writing systems
by Gross National Product, and all the Indian writing
systems are classified as “commercially irrelevant” because
India had a little over 1% of the world’s GNP at the time
. . .

The reality, of course, is more complex. The alphabets of
the modern world are virtually all descended from ancient
Egyptian hieroglyphics; the syllabic scripts of East Asia,
on the other hand, from the oracle–bone script of ancient
China.

I have found a nice family tree for the alphabets (fig. 1),
which besides the examples also gives the different direc-
tions of writing systems (mostly left to right, sometimes
right to left, more rarely from top to bottom).

This family tree is missing an important piece of informa-
tion: Most such scripts are cursive scripts (not only those

1A ligature or compound letter in typography refers to the merging of two or more letters of a typesetting script to form a glyph.
2Diacritical marks are dots, dashes, ticks, arcs, or circles attached to letters that indicate a pronunciation or stress that differs from the
unmarked letter.

28 Forth Magazine Vierte Dimension 2023/1

Internationalization With Gforth and ΜΙΝΩΣ2 — Part 2

in India), which use a lot of ligatures1 and diacritical2
characters, and therefore cannot be used simply as a
traditional computer character set.

Figure 1: The ABCD Family Tree

Here are the examples for India rendered with ΜΙΝΩΣ2:

Figure 2: Indian scripts, English name on the left, original on
the right

Tibetan is especially unusual because the ligatures are
also written vertically, which can result in remarkably
large descenders.

For the typesetting of these complex writing systems,
there is metadata in the OpenType fonts, which can be
used relatively easily using the Harfbuzz library. To de-
termine the direction of writing, there is the Unicode Bidi
Algorithm, which uses a relatively elaborate heuristic and
auxiliary markers, and which ΜΙΝΩΣ2 also implements.
Since this algorithm changes somewhat with each Unicode
version, there is no guarantee that text once correctly
rendered will still be correct in the next Unicode version;
unless one hard–codes the respective writing directions
using appropriate marker characters as well.

What did not happen at all was the unification of the
respective fonts of a language into a single universal font.
The code points of the respective fonts are now Unicode,
but only for one language. So, to render a Unicode text,
you first have to find out the writing direction, then select
the language–specific font, and then set the ligatures and
diacritical markers with the help of Harfbuzz.

For Far Eastern languages, however, this is still not suf-
ficient. Japanese and Chinese both use the characters
called Hanzi in China and Kanji in Japan. However,
the characters have different variants. For example, the
People’s Republic has used simplified characters since the
1950s, while Taiwan and Hong Kong write traditional
Chinese. Japanese has its own simplified characters (also
introduced in the 1950s as Shinjitai), though not all sim-
plifications have been done exactly the same way.

Unicode has separate code points for simplified and tradi-
tional Chinese respectively. These are the same language,
and the variants are local features and in the course of
the simplifications in Japan and China also not replaced
at once, but in several steps (the last one in Japan is from
2010); here it would make more sense, the respective user
installs a font according to his taste, and the characters
are then just rendered either simplified or traditional.
For special purposes (such as dictionaries that want to
represent more than one variant), a meta–character could
be introduced that switches definitively to traditional
or simplified. This would make it possible for Mainland
Chinese and Taiwanese to communicate in writing with-
out stumbling over the unfamiliar representation of the
characters.

In Japanese, which is a clearly different language (even
if a significant part of the vocabulary is made up of Chi-
nese foreign words, with a sound shift typical of some
southeast Chinese dialects), and in which typesetting has
also adopted a different variant of traditional calligraphy
in print, one has simply chosen the path of mapping all
characters to the most similar Chinese characters (mostly
simplified); the variants are thus not encoded differently.
You have to know that it is a Japanese text, and then
choose a Japanese font accordingly, then it fits. A suitable
heuristic would be to search for Katakana or Hieragana,
which does not occur in purely Chinese texts. However,
especially short Japanese texts, such as those found in
UIs, but also chat messages, are often completely in Kanji,
so they contain no clue as to what language this should
be.

2023/1 Forth Magazine Vierte Dimension 29

Internationalization With Gforth and ΜΙΝΩΣ2 — Part 2

Font Size

The font size is still a sub–topic here. Traditionally, type
size is measured by the height of the metal blocks, known
as “sorts”, used in lead type, and digital character sets are
also sized according to this tradition. This is a largely
irrelevant measurement for the user; what is important is
that the fonts used are roughly equally legible at a typi-
cal viewing distance. To this end, ΜΙΝΩΣ2 sets Chinese
fonts, emojis, and hieroglyphs larger than alphabets (the
latter considerably larger). Then it fits.

What Would Have Been the Right Way to
Do It?

Alphabets, no matter which of the more than 50, are just
alphabets, i.e., the characters look different depending
on the region, but have basically the same meaning. The
code point should therefore better encode which char-
acter is meant, not which writing system and language
(whereby writing systems can of course contain single
characters, which are circumscribed in other writing sys-
tems with several characters; the characters are however
phonetic units in any case). Actually, this would already
apply to our upper and lower case letters, which are also
only different spellings of the same phonemes; but we use
them together in a text.

The writing system used in each case is orthogonal in-
formation, which is important for selecting the correct
character set, the meta information for ligatures & dia-
critic characters and the writing direction, whereby the
writing direction can also be different for numbers (and
then a heuristic is followed during input, which is then
stored with the text). The information about the lan-
guage used is important e.g. for hyphenation algorithms,
even if the font itself looks exactly the same (i.e. relevant
especially for Central and Western European texts, where
a uniform font has become established after the abolition
of Gothic type).

A corresponding encoding would therefore have states
(or even a state stack), and the characters must be inter-
preted context–dependently in any case. But they must

already because of the selection of the writing direction,
and thus this is no loss: The correct interpretation of a
text results from the whole string, not from individual
characters. If you separate out a substring, you have
to find the appropriate meta characters that describe it
correctly. Character set variants like bold or italic (or in
other fonts the choice of comparable calligraphy styles)
would be included in that, and not part of a markup
on another level; also because otherwise these markups
interact with the Bidi Algorithm in surprising ways.

My suggestion would be to use the codes $FC (+ bytes in
the range $80..$BF) to $FF, which have not been used so
far in UTF–8, to encode appropriate meta–information
regarding font choice and writing direction, where $FF
is the pop, and all other state changes throw the previ-
ous state onto a stack. Missing pops at the end of the
text are not a problem, there will be tidying up in any
case; parsing invalid UTF–8 code should not throw off
too much software either, since the self–synchronizing
property of UTF–8 is preserved. The $F8..$FB range
present in the original Unicode draft would still be usable
for five–byte sequences, should the need for such large
code points ever arise. If one selects a language, the fol-
lowing UTF–8 letter code points and code points ≥ $7F
then only encode an offset within the corresponding code
blocks; control characters, western “Arabic” numerals,
and special characters are preserved because they are
used in many writing systems, are also present in the
fonts, sometimes deliberately in the variants used, and
then do not have to be switched unnecessarily for this.

Ultimately, this would no longer be “Unicode”, i.e. no
unification, but the opposite: a “Localicode”, in which in
particular it is unified how to get to the corresponding
locale and back.

[Translated to English by Wolfgang Strauß]

References

[1] Joseph D. Becker, 10 Years of Unicode Standard
1988 to 1998, https://www.unicode.org/history/
unicode88.pdf

30 Forth Magazine Vierte Dimension 2023/1

https://www.unicode.org/history/unicode88.pdf
https://www.unicode.org/history/unicode88.pdf

Addresses and Contact Persons

Regional Forth Groups

Please ask the organisers if the meetings will take place.
This may vary depending on the pandemic situation.

Mannheim Thomas Prinz
Tel.: (0 62 71) – 28 30p
Ewald Rieger
Tel.: (0 62 39) – 92 01 85p
Treffen: jeden 1. Dienstag im Monat
Vereinslokal Segelverein Mannheim
e.V. Flugplatz Mannheim–Neuostheim

München Bernd Paysan
Tel.: (0 89) – 41 15 46 53

2d@ . en e dotrbe n
Treffen: Jeden 4. Donnerstag im
Monat um 19:00 auf http://public.
senfcall.de/forth-muenchen, Pass-
wort over+swap.

Hamburg Ulrich Hoffmann
Tel.: (04103) – 80 48 41

-r d@ eho eto f .h vu
Treffen alle 1–2 Monate in loser Folge
Termine unter: http://forth-ev.de

Ruhrgebiet Carsten Strotmann
dt- hp atf nnr@ .ttr oot m esh or ru

Treffen alle 1–2 Monate im Unperfek-
thaus Essen
http://unperfekthaus.de.
Termine unter: https://www.meetup.
com/Essen-Forth-Meetup/

Services of the Forth–Gesellschaft
Nextcloud https://cloud.forth-ev.de

GitHub https://github.com/forth-ev

Twitch https://www.twitch.tv/4ther

µP–Controller–Pool Carsten Strotmann
vc l ho n o @ilo d.-hvc r er e te o efr er r lim t

o ef@ -h drt .v ecvm

Special Fields

Forth hardware in VHDL Klaus Schleisiek
microcore (uCore) Tel.: (0 58 46) – 98 04 00 8p

e e efr dee tei .c ish kl n@sk

AI, Object Oriented Forth, Ulrich Hoffmann
Safety–critical Tel.: (0 41 03) – 80 48 41
systems v df h .- e@ r eo ohu t

Forth distribution Ingenieurbüro
volksFORTH Klaus Kohl–Schöpe
ultraFORTH Tel.: (0 82 66)–36 09 862p
RTX / FG / Super8
KK–FORTH

Events

Thursdays from 20:00
Forth–Chat net2o forth@bernd using the key
keysearch kQusJ, complete key:
kQusJzA;7*?t=uy@X}1GWr!+0qqp_Cn176t4(dQ*

Every 1st Monday of the month from 20:30
Forth Evening
Video meeting (not only) for beginners.
Info and participation link: Email to wost@ewost.de

Every 2nd Saturday of the month
ZOOM meeting of the Forth2020 Facebook group
Participation info: www.forth2020.org

Annual Forth Conference (online) May 05–07, 2023
https://tagung.forth-ev.de

You can find details on the dates at http://forth-ev.de

Would you like to start a local Forth group in your
area, or just initiate regular meetings? Or can you
imagine providing assistance to Forthers seeking advice
on Forth (or other topics)? Would you like to make
contacts that go beyond the VD and the annual mem-
bership meeting? Just write to the VD — or call — or
send us an email!

Notes on the abbreviations after the telephone numbers:
Q = Answering machine
p = Private, outside typical working hours
g = Relating to business
The office addresses of the Forth–Gesellschaft e.V. and
of the VD can be found in the imprint of the magazine.

2023/1 Forth Magazine Vierte Dimension 31

http://public.senfcall.de/forth-muenchen
http://public.senfcall.de/forth-muenchen
http://forth-ev.de
http://unperfekthaus.de
https://www.meetup.com/Essen-Forth-Meetup/
https://www.meetup.com/Essen-Forth-Meetup/
https://cloud.forth-ev.de
https://github.com/forth-ev
https://www.twitch.tv/4ther
www.forth2020.org
https://tagung.forth-ev.de
http://forth-ev.de

Attention:Date has been Changed!
Forth Conference 2023 from 05 to 07 May 2023
(Online)
Organization: Board of the Forth Gesellschaft

In 2023, the Forth Gesellschaft (Forth fellowship Germany) will again hold its conference and membership meeting
online. Since this format of video conferencing has been well received in recent years, we will continue this with the
already proven BBB system. Traveling is omitted — visiting monasteries and landscapes, having a delicious meal
together and talking shop at the bar until late at night is also omitted, unfortunately. But the meeting is free of charge,
so it costs nothing extra, except the effort to register. Non–members are also most welcome.

Registration

At https://tagung.forth-ev.de you will find further
information, the current program and the possibility to
register for the conference electronically.

Program

Friday 05 May 2023

• Evening: Informal meeting online without special pro-
gram;
starting at 19:00

Saturday, 06 May 2023

• Morning: Lectures and workshops

• Afternoon: Lectures and workshops

• Evening: Dinner together (online edition)

Sunday, 07 May 2023

• Membership meeting of the Forth Gesellschaft e.V.;
from 10:00 to 13:00

• Space for some more workshops;
from 15:00 to 18:00

Figure 1: The other day it looked like this photo. Make sure the lighting is good and the background is nice for you.

[Translated to English by Wolfgang Strauß]

https://tagung.forth-ev.de

	FEE — Forth Enhanced Editor
	Flashing Forth
	First Steps Towards an Astroimaging Control System in Forth
	Souped Up SBCs
	Booting Programs from Disk
	Sculpting Forth for SPI Flash
	Internationalization With Gforth and 2 — Part 2
	Attention: Date has been Changed! Forth Conference 2023 from 05 to 07 May 2023 (Online)

