
Vierte Dimension 1/2026

Das Forth–Magazin
für Wissenschaft und Technik, für kommerzielle EDV,
für MSR–Technik, für den interessierten Hobbyisten

In dieser Ausgabe:

Ergebnis des Zensus

Datenarchäologie — Wie man
Osborne–Disketten heute einlesen
kann

Structs und Peripherals

cc64 — Small–C–Compiler in Forth

CASE — Ein ganz einfacher Fall

Forth–Projekte auf Codeberg

Von Fahrenheit, Celsius und der
Bruchrechnung

25 Jahre AATiS e.V.

Mini–Terminal

Jahrestagung 2026

42. Jahrgang — Ausg. 1/2026 — 4,–e Organ der Forth–Gesellschaft e.V.

Dienstleistungen und Produkte

tematik GmbH
Technische
Informatik

Feldstraße 143
D–22880 Wedel

Fon 04103 – 808989 – 0
Fax 04103 – 808989 – 9

l me at i@ k ed.i tma
http://www.tematik.de

Seit 2001 entwickeln und vertreiben wir unter dem Mar-
kennamen „Servonaut“ Baugruppen für den Funktions-
modellbau wie Fahrtregler, Lichtanlagen, Soundmodule
und Funkmodule. Unsere Module werden vorwiegend in
LKW–Modellen im Maßstab 1:14 bzw. 1:16 eingesetzt,
aber auch in Baumaschinen wie Baggern, Radladern etc.
Wir entwickeln mit eigenen Werkzeugen in Forth für
die Freescale–Prozessoren 68HC08, S08, Coldfire sowie
Atmel AVR.

Forth–Schulungen

Möchten Sie die Programmiersprache Forth erlernen
oder sich in den neuen Forth–Entwicklungen weiterbil-
den? Haben Sie Produkte auf Basis von Forth und möch-
ten Mitarbeiter in der Wartung und Weiterentwicklung
dieser Produkte schulen?

Wir bieten Schulungen in Legacy–Forth–Systemen (FIG–
Forth, Forth83), ANSI–Forth und nach den neusten
Forth–200x–Standards. Unsere Trainer haben über
20 Jahre Erfahrung mit Forth–Programmierung auf
Embedded–Systemen (ARM, MSP430, Atmel AVR,
M68K, 6502, Z80 uvm.) und auf PC–Systemen (Linux,
BSD, macOS und Windows).

Carsten Strotmann .t@ ns nms ett aor e dn rca
https://forth-schulung.de

RetroForth
Linux · Windows · Native

Generic · L4Ka::Pistachio · Dex4u
Public Domain

http://www.retroforth.org
http://retro.tunes.org

Diese Anzeige wird gesponsort von:
EDV–Beratung Schmiedl, Am Bräuweiher 4,
93499 Zandt

Weitlstraße 140
Cornu GmbH 80995 München

Ingenieurdienstleistungen le c@ rn ds . eo usa
Elektrotechnik www.cornu.de

Unser Themenschwerpunkt ist automotive SW unter
AutoSAR. In Forth bieten wir u. a. Lösungen zur Verar-
beitung großer Datenmengen, Modultests und modell-
getriebene SW, z. B. auf Basis eCore/EMF.

KIMA Echtzeitsysteme GmbH

Güstener Straße 72 52428 Jülich
Tel.: 02463/9967–0 Fax: 02463/9967–99
www.kimaE.de f ki .mo aE@ deni

Automatisierungstechnik: Fortgeschrittene Steuerungen
für die Verfahrenstechnik, Schaltanlagenbau, Projektie-
rung, Sensorik, Maschinenüberwachungen. Echtzeitrech-
nersysteme: für Werkzeug– und Sondermaschinen, Fuzzy
Logic.

FORTecH Software GmbH

Tannenweg 22 m D–18059 Rostock
https://www.fortech.de/

Wir entwickeln seit fast 20 Jahren kundenspezifische Software
für industrielle Anwendungen. In dieser Zeit entstanden
in Zusammenarbeit mit Kunden und Partnern Lösungen
für verschiedenste Branchen, vor allem für die chemische
Industrie, die Automobilindustrie und die Medizintechnik.

Konsulting Tel.: (0 82 66)–36 09 862
Klaus Kohl–Schöpe Prof.–Hamp–Str. 5

D–87745 Eppishausen

Professionelle Entwicklung für Steuerungs– und Mess-
technik. Literaturservice, Datenblätter; auch alles zu
Forthsystemen und MCUs.

Mikrocontroller–Verleih
Forth–Gesellschaft e. V.

Wir stellen hochwertige Evaluation–Boards, auch FPGA,
samt Forth–Systemen zur Verfügung: Cypress, RISC–
V, TI, MicroCore, GA144, SeaForth, MiniMuck, Zilog,
68HC11, ATMEL, Motorola, Hitachi, Renesas, Lego . . .
https://wiki.forth-ev.de/doku.php/mcv:mcv2

2 Forth–Magazin Vierte Dimension 1/2026

http://www.tematik.de
https://forth-schulung.de
http://www.retroforth.org
http://retro.tunes.org
http://www.cornu.de
www.kimaE.de
https://www.fortech.de/
https://wiki.forth-ev.de/doku.php/mcv:mcv2

Inhaltsverzeichnis

Leserbriefe und Meldungen . 5

Ergebnis des Zensus . 9
Euer Kassenwart

Datenarchäologie — Wie man Osborne–Disketten
heute einlesen kann . 10

Hans Hübner

Structs und Peripherals . 12
Projekt Forth Works Kolumne

cc64 — Small–C–Compiler in Forth . 14
Philip Zembrod

CASE — Ein ganz einfacher Fall . 19
Klaus Schleisiek

Forth–Projekte auf Codeberg . 20
Rezension

Von Fahrenheit, Celsius und der Bruchrechnung . 22
Euer Kolumnist

25 Jahre AATiS e.V. 27
Euer Kolumnist

Mini–Terminal . 28
Rafael Deliano

Jahrestagung 2026 . 32
Schnell noch anmelden!

Titelbild: Zensus unter der Lupe Autor: M.Kalus
Quelle: Eigenes Werk (Lupenbild CC)

Alle Texte in diesem Heft wurden von den Autoren vor Veröffentlichung gegengelesen und die Abdruckerlaubnis
gegeben.

Die Bilder in diesem Heft sind Werke der jeweiligen Autoren.
Wurden Bilder von anderen Autoren verwendet, ist dies am Bild angegeben.
Bildquellenverzeichnis:
David Levy, Photograph of an Osbourne 1, the first truly portable computer; https://commons.wikimedia.org/wiki/File:Osborne_1_open.jpg
Computer Disks — Osborne 1, 1982. Source: Museums Victoria; Copyright Museums Victoria / CC BY (Licensed as Attribution 4.0 International)
Joker.mg, B3eck–bochum, CC BY–SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons https://commons.wikimedia.org/wiki/File:B3eck_bochum.total12.JPG#
Licensing
Raenmaen, GFDL, https://commons.wikimedia.org/wiki/File:Bochum_Jugendherberge.jpg
Chatsam, Thermoskop des Gallileo; PD Wikipedia...MuséedesArtsetMétiersthermoscopedegalilée1592(cropped).JPG.
Dr. Manuel, Ole Römer (Gemälde);https://de.wikipedia.org/wiki/Datei:Ole_R%C3%B8mer_(Gem%C3%A4lde).jpg
Randall Munroe “Superstition” CC BY–NC 2. https://xkcd.com/3191/

1/2026 Forth–Magazin Vierte Dimension 3

https://commons.wikimedia.org/wiki/File:Osborne_1_open.jpg
https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:B3eck_bochum.total12.JPG#Licensing
https://commons.wikimedia.org/wiki/File:B3eck_bochum.total12.JPG#Licensing
https://commons.wikimedia.org/wiki/File:Bochum_Jugendherberge.jpg
Wikipedia ... Mus�e des Arts et M�tiers thermoscope de galil�e 1592 (cropped).JPG.
https://de.wikipedia.org/wiki/Datei:Ole_R%C3%B8mer_(Gem%C3%A4lde).jpg
https://xkcd.com/3191/

Impressum
Name der Zeitschrift
Vierte Dimension
Herausgeberin
Forth–Gesellschaft e. V.
Postfach 1030
48481 Neuenkirchen
E–Mail: rrye e . etc at v@r df -heS o

e t i t -f dk eo . ev@o u rr r hi mD
Bankverbindung: Deutsche Skatbank
IBAN: DE27 8306 5408 0006 8751 14
BIC: GENO DEF1 SLR

Redaktion & Layout
Bernd Paysan, Ulrich Hoffmann
E–Mail: f t v.@ de-ro eh4d

Anzeigenverwaltung
Büro der Herausgeberin

Redaktionsschluss
Januar, April, Juli, Oktober jeweils
in der dritten Woche

Erscheinungsweise
1Ausgabe /Quartal

Einzelpreis
4,00e + Porto u. Verpackung

Manuskripte und Rechte
Berücksichtigt werden alle einge-
sandten Manuskripte. Leser-
briefe können ohne Rücksprache
wiedergegeben werden. Für die
mit dem Namen des Verfassers
gekennzeichneten Beiträge über-
nimmt die Redaktion lediglich
die presserechtliche Verantwor-
tung. Die in diesem Magazin
veröffentlichten Beiträge sind
urheberrechtlich geschützt. Über-
setzung, Vervielfältigung, sowie
Speicherung auf beliebigen Medien,
ganz oder auszugsweise nur mit
genauer Quellenangabe erlaubt.
Die eingereichten Beiträge müssen
frei von Ansprüchen Dritter sein.
Veröffentlichte Programme gehen
— soweit nichts anderes vermerkt
ist — in die Public Domain
über. Für Text, Schaltbilder oder
Aufbauskizzen, die zum Nicht-
funktionieren oder eventuellem
Schadhaftwerden von Bauele-
menten führen, kann keine Haftung
übernommen werden. Sämtliche
Veröffentlichungen erfolgen ohne
Berücksichtigung eines eventuellen
Patentschutzes. Warennamen
werden ohne Gewährleistung einer
freien Verwendung benutzt.

Editorial

Liebe Leser,

ihr habt rasch reagiert Ende letzten Jahres und eure
Mitgliedsbeiträge nachgezahlt. So ist der Mitglieder-
stand der Vorjahre praktisch erreicht worden. Vielen
Dank für euer Engagement in der Forth–Gesellschaft.

Es hat sich gezeigt, dass unser Verein weiter bestehen
bleiben kann. Zwar nicht auf dem Niveau der Gründer-
zeit, da hatte die FG mal an die 200 Mitglieder, wenn
die alten Listen stimmen. Doch dank euch trägt sich
die FG nach wie vor, auch wegen der vielen Freiwilligen
und ehrenamtlich Tätigen. Kommt nach Ostern zur
MV nach Bochum, dort könnt ihr sie alle persönlich antreffen.

Im Ergebnis des Zensus findet ihr weitere Überlegungen dazu.

Hans Hübner hat gezaubert und das Gründungsprotokoll und noch andere hüb-
sche Sachen von einer alten Diskette gerettet. Dabei ist auch Klaus Schleisieks
CASE wiedergefunden worden, eine Technik, die sich eingebürgert hat.

Hans Eckes zauberte ebenfalls. Dabei kamen die Datentypen structs und
peripherals aus dem Hut auf den Tisch in Burladingen 2025 und von dort
ins Project Forth Works. Hier im Heft bekommt ihr den Appetit, euch das im
Forth–Wiki näher anzusehen. Danke, Hans, für die Mühe.

Und auch Philip Zembrod scheint Magie zu verwenden, wenn er einen
Small–C–Compiler in Forth in eine so kleine Maschine wie den C64 unterkriegt.
Dass es dabei doch mit Know–how zugeht, wird ersichtlich, folgt ihr seinen
Spuren durch den Linux–Editor in die make–automatisierten Emulatoren.

Rafael Deliano hingegen zaubert mit Hardware. Sein Mini–Terminal
(Breadboard–Terminal) lockt den Betrachter auf Ausstellungen an, wie auch den
Entwickler von Testsoftware in Laboren.

Und ich selbst habe diesmal auch etwas verfasst und das Format der Kolumne
wiederbelebt. Da findet ihr was zum Codeberg, über Fahrenheit und Celsius, und
über Fledermäuse im Regen.

Ich hoffe, das Heft gefällt. Es war recht zeitig im Jahr fertig dank eurer Einsen-
dungen. Mir scheint, die Weihnachtsfeiertage 2025, mitten in der Woche, haben
euch gutgetan.

So, und jetzt kommt bitte alle zur Jahrestagung 2026 nach Bochum.
Wer noch nicht angemeldet ist, hole das unverzüglich nach, bevor alle Plätze weg
sind — die Rückseite bringt dich da hin.

Euer Michael

Die Quelltexte in der VD müssen Sie nicht abtippen. Sie können sie auch von
der Web–Seite des Vereins herunterladen.
http://fossil.forth-ev.de/vd-2026-01

Die gem. Forth–Gesellschaft e. V. wird durch ihr Direktorium vertreten:

Ulrich Hoffmann Kontakt: er h@u tFr dvmkt .ei -rooi eD
Bernd Paysan
Gerald Wodni

4 Forth–Magazin Vierte Dimension 1/2026

http://fossil.forth-ev.de/vd-2026-01

Leserbriefe und Meldungen

Wem gehört ein AI–generiertes Bild?

Hier Grok zu fragen, entspricht in etwa, einen Dieb zu
fragen, wem die Beute gehört. Es ist nicht zu erwarten,
dass dabei etwas Wahres und Ehrliches herauskommt: AIs
trainieren sich massiv mit urheberrechtlich geschütztem
Material. Entscheiden, wem das Bild tatsächlich gehört,
wird daher nicht Grok, Gemini oder ChatGPT, sondern
ein Gericht. Wahrscheinlich eines in den USA, denn dort
fing gerade die erste Klage eines Titanen der Filmwirt-
schaft gegen einen Titanen der AI–Wirtschaft an:

https://www.golem.de/news/star-wars-marvel-
und-co-in-ki-systemen-disney-wirft-google-
massive-urheberrechtsverletzungen-vor-2512-
203185.html

Und wenn es in den USA scheitert, könnte Disney auch
versuchen, die deutsche Rechtsprechung zu nutzen.

Zunächst argumentieren die natürlich so, dass man durch
entsprechende Prompts Teile ihrer Werke reproduzieren
kann. Deshalb gehe ich davon aus, dass die Klage er-
folgreich sein wird. Und dass sich daraus dann auch ein
Graubereich ergeben wird, in dem zwar nicht eindeutig
und direkt ein Werk zitiert wird, aber doch erkennbar
davon abgeleitet wird, und schon das ist ein Problem. Die
AI kann sich, da sie selbst kein „Schöpfer“ im Sinne des
Urheberrechts ist, auch nicht auf Fair Use beziehen (das
es ohnehin nur in den USA gibt, und nicht in Deutsch-
land), denn ihr Eigenanteil an der Schöpfung ist, egal, wie
viel sie rekombiniert und kreativ neu arrangiert, im Sinne
des Urheberrechts immer null: Sie erzeugt neue Bilder aus
vorhandenen, „gelernten“ Bildern. Da müsste man dann
nachweisen, dass die Trainingsdaten nicht verunreinigt
sind, also nur aus frei nutzbaren Werken bestehen. Damit
lassen sich die Ergebnisse aber nicht erklären.

Beispiel–Prompt (für Grok und Gemini Text to
Image):

„Ein Laserschwertkampf zwischen Hua Mulan und
Darth Vader vor der Kulisse des Auenlandes, al-
so grüne, idyllische Wiesen mit Hobbit–Löchern.
Beide Darsteller bitte mit Laserschwertern.“

Die Ergebnisbilder sind der Redaktion bekannt, das von
Gemini gefällt mir besser.1 Das Hua–Mulan–Kostüm bei
Gemini ist nicht rot, und offensichtlich aus der chinesi-
schen Monumental–Verfilmung von 2009 mit Zhao Wei
als Hua Mulan entlehnt, nicht aus der Disney–Version.
Das kann man sicher mit einem etwas anders formulierten
Prompt ändern. Das kann jeder mal selbst ausprobieren,
die Ergebnisse hängen natürlich auch vom Zufall ab.

Disney will hier offensichtlich Lizenzgebühren von Google
und anderen AI–Firmen eintreiben. Das wird dann dafür
sorgen, dass auch andere Firmen diesen Weg gehen, und
erst, wenn alle drei Eigentümer dieser Immaterialgüter
gültige Lizenzen vergeben haben, könnte man die Bilder
ohne Bedenken veröffentlichen.

Deshalb gibt es für die VD eine Keine–AI–Bilder–
Politik. Es gibt keine Möglichkeit, rechtssicher AI–Bilder
zu bekommen, da die AI selbst kein Schöpfer im Sinne des
Urheberrechts ist, das Bild also nicht als ihr Werk ausge-
ben und lizenzieren kann. Gleichzeitig ist es offensichtlich,
dass die Trainingsdaten nicht nur aus frei verwendbaren
Bildern bestehen. Die Beweislast der korrekten Nutzung
liegt beim Verletzer. Das Ganze öffnet Tür und Tor für
Abmahnungen ähnlicher Bilder. Bernd Paysan

Cover-Bild leider nicht nutzbar

Hacker’s Delight

Die erste Auflage des Buches von Henry S. Warren,
Jr. war bereits 2002 ein Erfolg [2], da sich was Rang
und Namen hatte für das Buch einsetzte. Das Vorwort
stammt von Guy Steele.

Die 2. Auflage ist im Umfang deutlich gewachsen [1]. Die
Code–Schippsel sind in C oder Assembler unter Annah-
me einer 32–Bit–RISC–CPU geschrieben, ergänzt durch
reichlich Illustrationen. Leichte Kost ist die Prosa des
IBMers trotzdem nicht, hat wohl zu oft für akademische
Publikationen gearbeitet.

Die Darstellung ist zwar knapp, aber gut strukturiert.
Man wird leicht fündig, wenn man nach bestimmtem
Thema sucht. Auf 490 Seiten wird einiges geboten. Der
Schwerpunkt liegt neben Low–Level–Routinen bei Integer–
Arithmetik. Rafael Deliano

[1] Warren „Hacker’s Delight“ 2ed Addison Wesley 2013
ca. 52 EUR
[2] en.wikipedia.org/wiki/Hacker’s_Delight

1 Beim Autor auf Nachfrage einsehbar. (Hab die gesehen und kann bestätigen, was Bernd hier beschreibt. Der Sätza.)

1/2026 Forth–Magazin Vierte Dimension 5

https://www.golem.de/news/star-wars-marvel-und-co-in-ki-systemen-disney-wirft-google-massive-urheberrechtsverletzungen-vor-2512-203185.html
https://www.golem.de/news/star-wars-marvel-und-co-in-ki-systemen-disney-wirft-google-massive-urheberrechtsverletzungen-vor-2512-203185.html
https://www.golem.de/news/star-wars-marvel-und-co-in-ki-systemen-disney-wirft-google-massive-urheberrechtsverletzungen-vor-2512-203185.html
https://www.golem.de/news/star-wars-marvel-und-co-in-ki-systemen-disney-wirft-google-massive-urheberrechtsverletzungen-vor-2512-203185.html
en.wikipedia.org/wiki/Hacker's_Delight

Leserbriefe und Meldungen

Das FG–Gründungsprotokoll ist aufgetaucht

Wie Hans Hübner jenes Protokoll aus 1984 von Klaus’
alter Osborn–1–Diskette gerettet hat, berichtet er euch
in diesem Heft in einem kleinen Aufsatz. Das Protokoll
haben sie, die sechs Gründer, gleich in Englisch verfasst,
vermutlich um es in die USA an das FIG–Chapter zu
schicken.

“On April, 28th, sixteen people got together to get
the ball rolling for a German FIG chapter. Three
of us are ‘old FIG hands’ who once upon a time
keyed the FIG listings into their machines. We
are going to work as a chapter under the name of
Forth Gesellschaft und we will publish a newsletter
under the name of Vierte Dimension. The first
issue will be mailed by the end of may and it will
feature a translation of B. Ragsdale’s interview
from FD5/62. Six working groups constituted
themselves:

1. Forth–83 We will be distributing H. Laxen’s and
M. Perry’s F83 model and work is underway to
translate the documentation into German.

2. Leibniz One of the major difficulties in gaining wide
acceptance for Forth is constituted by the language
barrier. Hence we are going to create a ‘new’ program-
ming language under the name of Leibniz, which will
have German names and follow the Forth–83 Standard
semantically. Leibniz will be derived from the version
of Forth which was developed by K. Schleisiek and
it will be put into the public domain.

3. One working group will keep tabs of publications/prod-
ucts on Forth and compile an index.

4. Newsletter Vierte Dimension will be published ap-
proximately four times a year as a forum and commu-
nications vehicle for Forth users in Germany. Initial
subscription is 23,– DM for individuals and 55,– DM
for corporations.

5. Fifth Dimension This is a ‘brainstorming’ group
which is going to envision the future developements
of Forth towards friendly and not necessarily Forth–
like user interfaces and higher level constructs. We
will see what they are going to come up with. They
want to take Forth as a basis on which to build more
sophisticated structures.

6. Operations/management Horst–Günter Lyn-
sche was elected secretary of Forth Gesellschaft and
he will be responsible for the management aspects
— keeping tabs of the subscribers, publishing Vierte
Dimension etc.

Meetings will be held every fourth saturday of a
month at 15.00 hours. Ask Horst–Günter for the
location and direct any questions to: . . . 3” Klaus
Schleisiek

Das F83 wurde damals wirklich weit verbreitet, ich denke,
jeder Forthler kennt es noch.

Leibniz fand keine so weite Verbreitung, blieb irgendwie
Horst–Günter’s Sache; ich selbst hab das seinerzeit auf
einer der ersten Euro–Forth–Tagungen in Aktion gesehen
und war sehr beeintruckt von der damals sehr modernen,
farbigen Fensteroberfläche — toll!

Die Literatursammlung wurde durch das Forth–Magazin
transportiert und war weit verbreitet und fortgeschrieben.
Heute liegt sie auf https://wiki.forth-ev.de/doku.
php/projects:litlist.

Na ja, und den Newsletter haltet ihr ja grad in Händen.
Das Projekt läuft nun im 42. Jahr! Habt ihr damals also
gut gemacht, Leute!

Die „fünfte Dimension“ hingegen ward nicht gekommen —
oder weiß darüber jemand mehr als ich und mag berich-
ten?

Das Management wanderte durch viele Hände in all den
Jahren. Es erhielt unterwegs den Namen „Büro der Forth
Gesellschaft“, oder kurz FG–Büro und ist nach wie vor
erreichbar per secretary@forth-ev.de, was auch eine
erstaunliche Leistung durch all die Jahre ist. Liebe Grün-
der, das habt ihr gut gemacht damals.

Mit auf jener Diskette war übrigens noch ein Interview
mit K. Schleisiek zu Thema der „Standardisierungs-
konferenz für FORTH–83“ im Oktober 1982; auch das
Standard–Kommitee gibt es heute noch. Und ein Inter-
view mit Charles Moore, übersetzt ins Deutsche, das
so beginnt:

Frage: „Ich habe mir erzählen lassen, wie die Forth
Interest Group anfing, aber ich konnte nie heraus-
finden, warum . . . “

CM: „Warum? Es gibt kein Warum. Es ist einfach
so passiert und fing einfach an zu wachsen . . . “

mk

SUBLEQ eForth

Richard James Howe hat neulich (2024/2025) „ just
for fun“ eine 16–Bit–SUBLEQ–CPU geschrieben, in der
eForth abläuft.

“This project contains a working (self–hosting)
Forth interpreter that runs on top of a SUBLEQ
16–bit machine. SUBLEQ machines belong to the
class of One Instruction Set Computers, they only
execute a single instruction but are still Turing
Complete. The Forth system, specifically a variant
of eForth, is provided as subleq.dec, passing this
image to the tiny (~ 600 bytes) SUBLEQ C virtual
machine allows you to run eForth on the machine.
https://github.com/howerj/subleq”

2 Forth Dimension, Volume 5, Number 6
3 [The old address is known to the editorial staff.]

6 Forth–Magazin Vierte Dimension 1/2026

https://wiki.forth-ev.de/doku.php/projects:litlist
https://wiki.forth-ev.de/doku.php/projects:litlist
secretary@forth-ev.de
https://github.com/howerj/subleq

Leserbriefe und Meldungen

SUBLEQ (Subtract and Branch if Less than or Equal to ze-
ro) ist eine Variante eines One Instruction Set Computers
(OISC), einer Turing–vollständigen Rechnerarchitektur
mit nur einer einzigen Instruktion.

SUBLEQ hat keinen einzelnen, eindeutig benannten Er-
finder und keine dramatische Entdeckungsgeschichte. Es
entstand als Konsequenz aus theoretischen Überlegun-
gen zur Minimalität von Rechnerarchitekturen in den
1980er—1990er Jahren.

Die Idee basiert auf den Registermaschinen mit Inkre-
ment/Dekrement und bedingtem Sprung, die Marvin
Minsky in den 1960er Jahren beschrieben hat.4 Aus sol-
chen Minimalmodellen leitet sich ab, dass man mit einer
einzigen Subtraktions–Operation und bedingtem Sprung
auskommt. Die Addition lässt sich durch Subtraktion
negativer Zahlen simulieren.

Der Name SUBLEQ und die populäre Beschreibung als
OISC tauchten in den späten 1990er oder frühen 2000er
Jahren in der Bewegung für esoterische Programmierspra-
chen (esolangs) auf, insbesondere auf Plattformen wie
dem Esolang–Wiki.

Eine frühe formelle Erwähnung findet sich in einem Pa-
per von 1988 („URISC“5 von Mavaddat und Parhami),
das eine ähnliche subtraktions–basierte Ein–Instruktions–
Maschine beschreibt.

Lieber Carsten, danke für den Hinweis.

https://en.wikipedia.org/wiki/One-instruction_
set_computer#Subtract_and_branch_if_less_than_
or_equal_to_zero
https://esolangs.org/wiki/Main_Page

und Recherche mit Grok, Ergebnisse im Internet nachge-
sehen. mk

Kolumnisten

Wie ihr schon im Inhaltsverzeichnis gesehen habt, versu-
che ich mich gerade im Format der Kolumne, das zwischen
dem klassischen Aufsatz eines Autors und dem Leserbrief
oder einer knappen Meldung steht.

In unserem Forth–Magazin gab es das schon mal, von
2002 bis 2010, Gehaltvolles — zusammengestellt und über-
tragen von Fred Behringer. Fred, als Rentner, hatte die
Zeit dazu und Spass daran auch. Nach seinem Tode hat
das bis heute noch keiner wieder aufgegriffen.

Nun bin ich doch auch inzwischen Rentner mit Forth–
Hobby. Also, was ist das?

„Eine Kolumne ist ein regelmäßig erscheinender,
kurzer Meinungsbeitrag in einer Zeitung, Zeit-
schrift oder Online–Medien, der meist von einem

festen Autor, dem Kolumnisten, verfasst wird. Sie
erscheint an derselben Stelle und spiegelt die per-
sönliche Sichtweise des Autors wider, oft in Ich–
Form und mit humorvoller oder polemischer Note.

Der Begriff stammt vom lateinischen columna
(„Säule“) und bezieht sich ursprünglich auf die
Spalte im Drucksatz — also die vertikale Textauf-
teilung einer Zeitungsseite.

Heute steht „Kolumne“ vor allem für ein journa-
listisches Format, das unabhängig von aktuellen
Nachrichten sein kann, aber Leserbindung fördert
und Diskussionen anregt.“ [Wikipedia]

Na, dann versuche ich das auch mal. Doch etwas anders,
als Fred es gemacht hat, sollen die einzelnen Themen
im Inhaltsverzeichnis zu erkennen sein. Daher gibt es
also gleich mehrere „Kolumnen“. Und unser bewährtes
Aufsatz–Format passt da ganz gut, finde ich. Hoffentlich
gefällts euch.

Dass ihr ebenfalls in diesem Format hier schreiben könnt,
muss ich ja nicht extra erwähnen. mk

Kommentare im Forth–Quellcode

In Gforth, wie in den meisten ANS–Forth–Systemen, gibt
es keine eingebaute Syntax für echte Block–Kommentare
wie /* ... */ in C oder Pascal.

Es gibt zwei Standardmöglichkeiten in Forth.

(...)

Das ist der klassische, meist kurze Forth–Kommentar.
Doch er kann in Dateien auch über mehrere Zeilen gehen,
solange eine schließende) gefunden wird. Beispiel in einer
.fs-Datei:

(Dies ist ein Kommentar
über mehrere Zeilen.
Er endet hier:)

: hallo ." Hallo Welt!" ;

Wichtig: Es muss ein Leerzeichen nach der öffnenden
Klammer stehen (␣ und diese Art Kommentare sind nicht
schachtelbar.

\

Kommentar bis zum Zeilenende, sehr praktisch für mehr-
zeilige Blöcke und auch die empfohlene Methode zum
Auskommentieren größerer Code–Blöcke:

\ Langer Kommentar oder auskommentierter Code
\ Zeile 2
\ Zeile 3

4 Der Hauptbeitrag Minskys zu diesem Thema findet sich in seinem klassischen Buch: Computation: Finite and Infinite Machines
(Prentice–Hall, 1967).

In diesem Werk beschreibt und beweist er detailliert die Universalität von Registermaschinen mit minimalen Instruktionen. Es enthält
die Beweise zur Simulation beliebiger Computer mit nur zwei Registern und einfachen Operationen. Das Buch ist ein Standardwerk zur
Berechenbarkeitstheorie und diskutiert explizit minimale Maschinenmodelle, inklusive Varianten, die zu OISC–Ideen führen.

5 Ultimate Reduced Instruction Set Computer

1/2026 Forth–Magazin Vierte Dimension 7

https://en.wikipedia.org/wiki/One-instruction_set_computer#Subtract_and_branch_if_less_than_or_equal_to_zero
https://en.wikipedia.org/wiki/One-instruction_set_computer#Subtract_and_branch_if_less_than_or_equal_to_zero
https://en.wikipedia.org/wiki/One-instruction_set_computer#Subtract_and_branch_if_less_than_or_equal_to_zero
https://esolangs.org/wiki/Main_Page

Leserbriefe und Meldungen

\ : alte-definition ... ;
\ Diese Definition wird ignoriert

Auch dabei gilt, nach dem Backslash muss ein Leerzeichen
stehen \␣ , weil es ein ausführbares Forthwort ist.

Was passiert da?

see \
: \
blk @
IF >in @ c/l / 1+ c/l * >in ! EXIT
THEN
source >in ! drop ; immediate
ok

Nun, blk @ liefert den Indikator der Herkunft des Quellco-
des, entweder ein Block–File–System oder eine Textdatei.

Falls es ein Block ist, wird der Input auf den Anfang der
nächsten Zeile im Block gesetzt. Im anderen Fall wird der
Input einfach an das Ende der aktuellen source gesetzt,
die sich damit erschöpft hat.

Und das Wörtchen immediate sorgt schließlich dafür,
dass diese Definition immer sogleich ausgeführt und nicht
compiliert wird.

Der Rest der aktuelle Zeile wird also einfach übersprun-
gen.

see (
: (
loadfile @ 0=
IF POSTPONE (EXIT THEN
BEGIN
>in @ 41 parse nip >in @ rot - =
WHILE refill 0=
WHILE warnings @
WHILE .\" warning: ’)’ missing" cr
THEN

EXIT
THEN

REPEAT ; immediate ok

Hier läuft es etwas anders. Die öffnende Klammer (ist
ein kleiner Parser.

Im Fall der Eingabe auf der Konsole wird die Ausführung
zurückgestellt bis zum <ret> und dann erst passiert die
Magie: Alles zwischen den Klammern wird ignoriert.

11 22 33 (44 55) .s <3> 11 22 33 ok

Im Fall eines Einstroms von Quellcode hingegen sucht 41
parse die schließende Klammer.6 Dabei wird der input
stream solange fortgeschrieben, bis das Zeichen da oder
das File erschöpft ist. Letzteres löst die Warnung aus.

Interessant hier die verschachtelten while. Und vorne-
dran der exit case, wie ihn Klaus Schleisiek seinerzeit
einführte. mk

Neues Archiv für die „Vierte Dimension“

Es ist wieder komplett da, unser VD–Archiv! Zwar nicht,
wie früher, unmittelbar einsehbar in unserem Wiki, son-
dern auf einer eigenen Plattform. Carsten Strotmann
hat Paperless–ngx für euch angelegt und inzwischen auch
alle Hefte eingelesen.

Der Zugang ist frei, im Sinne von „Freibier“, aber nicht
öffentlich für jederman zugänglich. Ihr müsst euch euren
Zugang geben lassen vom Forth–Büro oder von Cars-
ten selbst. Warum das so ist in Deutschland, hat sich ja
vermutlich inzwischen herumgesprochen.

Forth–Büro: secretary@forth-ev.de
VD–Archiv: https://paperless.forth-ev.de/
https://docs.paperless-ngx.com/

xkcd superstitious

6 decimal char) . 41 ok

8 Forth–Magazin Vierte Dimension 1/2026

secretary@forth-ev.de
 https://paperless.forth-ev.de/
https://docs.paperless-ngx.com/

Ergebnis des Zensus

Ergebnis des Zensus
Euer Kassenwart

Im letzten Heft riefen wir euch dazu auf, eure Mitgliedschaft zu erneuern und auch mal wieder Kontakt zum Forthbüro
aufzunehmen. Sieht so aus, als sei Ersteres im Großen und Ganzen gelungen. Der Kontakt könnte noch besser werden.

94

Das ist die Anzahl der Mitglieder in der Forth–
Gesellschaft e.V., Stand Januar 2026.

Jedenfalls, wenn man nur nach der schnöden Satzung geht,
nach der nur die Beitragszahlenden gerechnet werden.

Wir haben in der Satzung keine Ehrenamtlichen vorge-
sehen, keine Veteranen oder sonstwie Assoziierten. Was
eigentlich schade ist. Denn Forth–Seelen waren wir mal
rund 200 nach der Gründung. Und sieht man sich so um
in den Chats, sind da heute noch mehr, oder? Eigentlich
sollten wir die Assoziierten einführen, nicht nur Euros
zählen.

Theoretische Begründung für einen hybriden
Mitgliedsbeitrag in einem Verein

Die Idee eines Mitgliedsbeitrags, der sowohl in monetärer
Form (Euros) als auch durch praktische Arbeit geleistet
werden kann, lässt sich elegant aus einer ökonomisch–
soziologischen Perspektive begründen. Sie basiert auf dem
Konzept des sozialen Austauschs und der Ressourcenal-
lokation, inspiriert von Theorien wie der des Gemeinguts
(Commons) von Elinor Ostrom und der Spieltheorie von
John Nash.

In der Ökonomie wird der Beitrag zu einem Verein als
Investition in ein kollektives Gut verstanden. Ein Verein
ist ein Kooperationssystem, in dem Mitglieder Ressourcen
einbringen, um gemeinsame Ziele zu erreichen (Forth ist
Kultur). Geld (Euros) repräsentiert abstrakte Wertschöp-
fung, es ist liquide, standardisiert und ermöglicht dem
Verein, externe Dienstleistungen zu erwerben wie Miete
für Server oder Materialien. Praktische Arbeit hingegen
ist konkrete Wertschöpfung. Sie schafft direkten Nutzen
durch Zeit und Fähigkeiten, z. B. Organisation von Veran-
staltungen oder Pflege von Anlagen wie Webseite, Wiki,
Cloud, Teamwörks. Beide Formen sind äquivalent. Ein
Mitglied, das 40€ zahlt, opfert Kaufkraft; eines, das
4 Stunden arbeitet, opfert Freizeit oder alternative Ein-
künfte. So könnten finanziell schwächere Mitglieder durch
Arbeit kompensieren, ohne Diskriminierung — eine ele-
gante Lösung für soziale Gerechtigkeit (Studenten und
Rentner zahlen die Hälfte; dafür tun sie was im Verein,
z. B. im Büro oder als Autoren des Forth–Magazins!

Vereine seien anfällig für das Trittbrettfahrer–Problem
(Free–Riding), heißt es, bei dem Individuen von kollek-
tiven Gütern profitieren, ohne beizutragen. Etwas, dass
ich in der FG bisher aber nicht erlebt habe. Ihr?

Ein reiner Geldbeitrag könnte zu Passivität führen, wäh-
rend reine Arbeit zur Überlastung weniger führt. Das
erleben wir im Verein allerdings laufend. Es sind wenige
im und um das Büro herum und Carsten Strotmann
hat schießlich fast allein dagestanden.

Vereinsarbeit fördert soziale Bindung, da sie Interaktion
schafft und Identifikation mit dem Verein vertieft. Geld
sorgt für Effizienz. Diese Dualität minimiert Konflikte
und maximiert Kooperation — ein „hübsches“ Gleichge-
wicht, das wie ein symmetrisches Mandala wirkt: Beide
Seiten ergänzen sich zu einem Ganzen.

Ein großes Problem liegt in der räumlichen Zersplittert-
heit. In den Gründerzeiten der FG gab es den Versuch,
das durch lokale Gruppen zu kitten. Unsere Satzung
zeugt noch davon. In Hamburg, Mannheim, München
und Wuppertal gab es die. Die in Wuppertal ist nach
einigen Jahren zerfallen — es braucht immer einen, der
das vorantreibt. Zieht Derjenige weg und es findet sich
keine neuer „Motor“, ist es aus.

Inzwischen haben sich neue Moglichkeiten ergeben durch
das schnelle Internet mit seinen Browsern. Videokonfe-
renzen und Chats überbrücken die räumliche Entfernung.
Es finden sich wieder lose Gruppen zusammen. Bernd
Paysan und Wolfgang Strauß sind zwei solche mo-
dernen Forth–Gastgeber auf freien Plattformen außer-
halb von Facecbook und Co. Es bleibt das Problem der
Gleichzeitigkeit solcher Online–Treffen. Man muss nicht
verreisen, aber anwesend sein dann eben doch.

Nachhaltigkeit und Gemeinschaftsbildung

Die Praxis begründet den theoretischen Kern: Erfolg-
reiche Selbstorganisation basiert auf diversen Beitrags-
formen. Ein Verein als Commons profitiert von Vielfalt:
Monetäre Beiträge sichern finanzielle Stabilität, prakti-
sche Arbeit baut Humankapital auf. Dies fördert Resilienz
gegen externe Schocks (z. B. Pandemien).

Die Hybridform transformiert den Beitrag von einer Last
zu einer investiven Handlung, persönliches Wachstum
darin ist möglich, z. B. durch erlernte Fähigkeiten in der
Vereinsarbeit. In einer Ära des Individualismus (kennst
du ein Forth, kennst du ein Forth) stärkt dies Gemein-
schaften ohne Zwang — eine poetische1 Balance, die den
Forth–Verein zu einem lebendigen Organismus macht.

Lange Rede, kurzer Sinn: Euch allen meinen herzlichen
Dank für eure Beiträge — in der einen oder anderen Form.
mk

1 Der Ursprung liegt im altgriechischen Verb poiein, was so viel bedeutet wie machen, verfertigen, erschaffen, hervorbringen.

1/2026 Forth–Magazin Vierte Dimension 9

Datenarchäologie — Wie man Osborne–Disketten heute einlesen kann

Datenarchäologie — Wie man Osborne–
Disketten heute einlesen kann
Hans Hübner

Klaus1 brachte einige Disketten mit, die er in den frühen 1980er Jahren mit einem Osborne 1 verwendet hatte und auf
denen er interessante Dokumente vermutete. Da ich schon einige Erfahrung mit dem Einlesen alter Disketten habe,
holte ich die dafür notwendige Hardware aus dem Keller und wir befassten uns mit der Problematik, während wir Kaffee
und Lebkuchen verspeisten.

Die Hardware / Einlesen der Daten

Zum Einlesen alter Disketten verwendet man heutzuta-
ge am besten einen Flux–Leser, der die magnetischen
Flusswechsel ohne weitere Interpretation vom Disketten-
laufwerk einliest und an einen modernen Rechner zur
Verarbeitung weitergibt. Ich verwende meistens ein Grea-
seweazle, ich habe auch mit der Fluxengine gute Ergeb-
nisse erzielt. Das Greaseweazle wurde über USB mit dem
Mac verbunden. Mit einem normalen Floppykabel haben
wir ein gewöhnliches 5.25”–HD–Laufwerk angeschlossen.
Mit diesem Setup kann man nun die Disketten einlesen,
wobei die Greaseweazle–Software bereits die physikali-
schen Osborne–Formate beherrscht und uns somit direkt
die Fluxdaten dekodiert. Wir erhalten also die Datenblö-
cke so, wie sie auf den Disketten abgespeichert wurden.
Um eine normale Diskette mit 100 kB (einseitig, einfache
Dichte) einzulesen, ist dieses Kommando zu verwenden:

gw read --format=occ1.sd
--tracks=c=0-39:h=0:step=2
diskette-1a.img

Dabei ist occ1.sd das Osborne–Format (es gibt auch
occ1.dd für doppelte Dichte). Die Angabe step=2 ist
notwendig, um 40–Spur–Formate mit einem 80–Spur–
Laufwerk einzulesen. Bei fast allen Disketten funktionier-
te dieses Verfahren einwandfrei. Eine sperrte sich, daher
haben wir die Fluxdaten ohne Interpretation für eine
spätere Analyse ausgelesen. Das entsprechende Format
ist raw.250.

Foto: David Levy

Abbildung 1: Osborne 1

Auswerten der Daten

Die Image–Dateien der Disketten von Klaus enthielten
teilweise CP/M–Dateisysteme, teilweise enthielten sie
FORTH–Blöcke. Letztere lassen sich einfach so mit ei-
nem FORTH benutzen, das Block–I/O noch beherrscht.
Um Dateien aus den CP/M–Dateisystem–Images zu ex-
trahieren, habe ich cpmtools verwendet. Die passende
Formatdefinition ist

diskdef osb1sssd
seclen 256
tracks 40
sectrk 10
blocksize 2048
maxdir 64
skew 2
boottrk 3
os 2.2

end

Sie muss im diskdefs–File für die cpmtools–
Installation hinterlegt sein (bei mir ist das die Datei
/opt/homebrew/share/diskdefs). Mit cpmls kann man
nun die Dateien in einem der Images anzeigen:

% cpmls -f osb1sssd diskette-1a.img
0:
4dim.txt

Das Image enthält eine Datei mit dem Namen 4dim.txt
im Benutzerbereich 0, die nun mit cpmcp ins lokale Datei-
system kopiert werden kann:

% cpmcp -f osb1sssd diskette-1a.img 0:4dim.txt .
% ls -l 4dim.txt
-rw-r--r-- 1 hans staff 44544

Dec 7 11:10 4dim.txt

Konvertierung von WordStar–Dateien

Klaus hat seine Texte mit WordStar geschrieben, und die-
se Dateien lassen sich nicht ohne weiteres mit modernen
Textverarbeitungen öffnen. Die Formatierungsmöglichkei-
ten von WordStar waren aber ohnehin beschränkt, daher
bot es sich an, die Formatierungssteuerzeichen einfach zu
entfernen. Weiterhin muss das Bit 7 bei einigen Zeichen
gelöscht werden, weil es von WordStar für die Markie-
rung weicher Umbruchpositionen verwendet wird, und die

1 Klaus Schleisiek

10 Forth–Magazin Vierte Dimension 1/2026

Datenarchäologie — Wie man Osborne–Disketten heute einlesen kann

7–Bit–Umlaute müssen nach UTF–8 konvertiert werden.
Ich habe dazu alle WordStar–Dateien in ein temporäres
Verzeichnis kopiert und dort dieses Perl–Skript laufen
lassen:

#!/usr/bin/perl

Entfernen der Wordstar-Formatierungen
aus allen Dateien im aktuellen Verzeichnis
und Umwandlung nach UTF-8.

foreach $file (<*>) {
next if (! -f $file or $file =~ /\.cnv/);
open OUTFILE, ">$file.cnv";
open INFILE, "<$file";
while (<INFILE>)
{

tr [\200-\377] [\000-\177];
s/\[/Ä/g;
s/\\/Ö/g;
s/\]/Ü/g;
s/{/ä/g;
s/\|/ö/g;
s/}/ü/g;
s/@/§/g;

s/~/ß/g;
s/[\000-\011\013-\037]//g;
print OUTFILE $_;

}
close INFILE;
close OUTFILE;
print " Read $file, wrote $file.txt ...\n";

}

In den resultierenden Dateien muss man teilweise noch
ein paar Müllzeichen am Anfang editieren, aber das war
mit den paar Texten rasch erledigt. Es gibt angeblich auch
fertige Werkzeuge, die WordStar–Dateien einlesen und
konvertieren können, aber ich habe nichts gefunden, das
auf der Kommandozeile einfach so funktionieren würde.

Links

https://github.com/keirf/greaseweazle Tools for
accessing a floppy drive at the raw flux level.

https://cowlark.com/fluxengine/index.html The
FluxEngine hardware is a very cheap USB floppy disk
interface capable of reading and writing exotic non–PC
floppy disk formats.

Anmerkung

In der aktuellen Ausgabe des Forth–Magazins findet ihr gleich zwei der ausgegrabenen Fundstücke: das klassische
CASE–Statement, wie es Klaus Schleisiek seinerzeit vorgeschlagen hatte sowie das Protokoll der Gründungssitzung der
Forth–Gesellschaft. mk

Museum Victoria

Abbildung 2: Computer Disks — Osborne 1, 1982

1/2026 Forth–Magazin Vierte Dimension 11

https://github.com/keirf/greaseweazle
https://cowlark.com/fluxengine/index.html

Structs und Peripherals

Structs und Peripherals
Projekt Forth Works Kolumne

Hans Eckes stellte auf der Forthtagung in Burladingen 2025 diese Datenstrukturen vor, um den vielen Adressen aller
Register Herr zu werden, mit denen MCUs wie ein Arm Cortex–M7 heute1 daherkommen. Er schrieb den Quelltext auf
SwiftForth 3.12 und hat ihn nun auch im PFW veröffentlicht. Sein Quelltext ist reich kommentiert und ein kompletter
Aufsatz zu dem Thema.

„Structs gruppieren zusammengehörende Varia-
blen und verbessern so Lesbarkeit von Programm-
code. Priorität des weiter unten stehenden Codes
ist das Schreiben von lesbarem Quelltext, nicht
ein möglichst forthiges Herangehen ans Thema
‚Struct‘.

Peripherals sprechen Peripheriebausteine an, ha-
ben ansonsten aber das gleiche Innenleben wie
Structs . . . Im Prinzip muss IS-STRUCT? nur an
die Stelle hinter die Abfrage, ob das neue Wort
vielleicht eine Zahl war, eingefügt werden.“

So beginnt er und damit ist auch schon klar, wo die Reise
hingeht. Der Forth–Parser lernt einen weiteren Delimiter
— den Punkt. Beispiel:

SETTINGS.win.position.top

Hans taucht euch also tief ein in den Compilerbau. Im
klassischen Forth ist der Parser einfach gehalten. Ein
WORD im Quellcode reicht bis zum nächsten Leerzeichen.
Diese kurze Zeichenkette wird im Dictionary aufgesucht
und das Wort ausgeführt. Gibt es das Wort nicht, wird
noch untersucht, ob es eine NUMBER sein könnte, die dann
auf den Stack kommt — das ist die runtime. Und dann
gibt es bekanntlich einen 2. Zustand der Forth–Engine,
die compiletime. Dabei wird das WORD oder die NUMBER
als neue Struktur im Dictionary angelegt — ein neu-
es Forthwort ist entstanden. Und ist es weder das eine
noch das andere, wird eine Fehlermeldung ausgegeben.
In Gforth z. B:

qwe
:1: Undefined word
>>>qwe<<<
Backtrace:
$75D208007A68 throw
$75D20801DDF0 no.extensions
$75D208007D28 interpreter-notfound1

IS-STRUCT?

Nun ahnt ihr schon: IS-STRUCT? wird aufgerufen,
wenn das Wort nicht im Dictionary gefunden wurde. Es
wurde ins INTERPRET — genauer gesagt ins NOT-DEFINED
— von SwiftForth eingehängt2. Und das geht so:

’ IS-STRUCT? UNDEFINED >CHAIN

Es enthält STRUCT? und prüft, ob das unbekannte Wort
vielleicht zu einem Struct gehört.

Wie man die Structs gebraucht, schildert Hans ebenfalls
im Vorspann seines Quelltextes. Da habt ihr beides zu-
sammen, die Erklärung und wie es gemacht worden ist.

Ähnlich zu Forth gibt es Defining Structs, mit denen die
Structmemberlisten (in ASCII) erzeugt werden und die
damit angelegten structs , was die ausführbaren Worte
sind.

Hier ist ein kurzes Beispiel zur Definition von Structs:

STRUCT Header \ definiere das Struct "Header"
Int32 Command
Int32 ID
Int32 Len
Int32 Checksum

END-STRUCT

STRUCT Inputconfig
Header IHeader \ <-- baue "Header" in ein

\ anderes Struct ein
Int32 PreAmp
Int16 Filter
Int16 unused
Int32 Muxer

END-STRUCT

PERIPHs

Hans lieferte dann auch gleich praktische Beispiele, Wör-
ter für den einfachen Zugriff auf die Peripherie von Mikro-
controllern. Sein Ziel war es auch hierbei, einen „lesbaren“
Zugriff auf Peripherieregister zu bekommen.

Syntax am Beispiel UART:

0 UART3.CTRL !
UART3.DATA @

Für den Interpreter sind PERIPHs auch nur Structs, es
gelten die gleichen Syntaxregeln wie bei den Structs.

1 2025
2 Achtung: SwiftForth prüft erst, ob der String eine Zahl ist, bevor es die \ UNDEFINED–Chain abarbeitet.

12 Forth–Magazin Vierte Dimension 1/2026

Structs und Peripherals

Hier ein Beispiel für einen Quad–Timer

Group sei die Registergruppe für einen Timer in der
erwähnten MCU, die in Gruppen zu 4 Timern zusammen-
gefasst werden (Quad–Timer). Und der Controller hat
drei solche Quad–Timer. Entsprechend viele Register sind
zu handhaben. Über diese neue Syntax ist der Zugriff auf
das Register HOLD für Timer2 vom QuadTimer1 einfach
so:

QTMR1.2.HOLD \ Achtung, 16-Bit-Register!

Jedenfalls, wenn diese Peripherie zuvor angelegt worden
ist. Was der Fall ist im SwiftForth.

PERIPH GROUP \ definiere ein Peripheral
REG $00 COMP1 \ hinter REG steht der Offset

\ zur Startadresse
REG $02 COMP2 \ hinter dem Offset steht dann

\ der Registername
\ und alle Registernamen samt Offset landen
\ in der Memberlist von GROUP ...
REG $04 CAPT
REG $06 LOAD
REG $08 HOLD
REG $0A CNTR
REG $0C CTRL
REG $0E SCTRL
REG $10 CMPLD1
REG $12 CMPLD2
REG $14 CSCTRL

END-PERIPH

PERIPH TMR
GROUP $00 0 \ <- Peripheral nesting
REG $1E ENBL
GROUP $20 1
GROUP $40 2
GROUP $60 3
END-PERIPH

401DC000 TMR QTMR1 \ Quad-Timer 1 liegt
\ an Adresse 0x401DC000

401E0000 TMR QTMR2
401E4000 TMR QTMR3

\ Lese nun im Quad-Timer1
\ das Hold-Register von Timer0

QTMR1.0.HOLD W@

Die ganze Magie dahinter entfaltet Hans im Quelltext [1].

Hilfsworte

Manchmal muss der Inhalt von einem Struct in einen
anderen Struct kopiert werden. Beide Structs müssen
dabei vom gleichen Defining Struct angelegt worden sein,
dann geht das.

Zum Gebrauch von STRUCT> und >STRUCT siehe Quell-
text.

Auch ERASE-STRUCT und sizeof helfen beim Anlegen
und Erproben der Strukturen.

Link

[1] https://wiki.forth-ev.de/doku.php/en:pfw:
struct
Solltet ihr noch kein Browserzertifikat3 für diesen di-
rekten Zugang zum Wiki haben, geht es auch über
https://forth-ev.de/. Dort zum Wiki navigieren,
dann B — Projekt Forth Works und dort bei den Data
Structures ist auch structs zu finden. Die Botschaft von
Hans Eckes dort:

„Bitte verwende den Quelltext in diesem Sinne:
Lesen, anpassen, verwenden, weitergeben.“

mk

3 Gibt es im Forth–Büro; Anschrift im Impressum.

1/2026 Forth–Magazin Vierte Dimension 13

https://wiki.forth-ev.de/doku.php/en:pfw:struct
https://wiki.forth-ev.de/doku.php/en:pfw:struct
https://forth-ev.de/

cc64 — Small–C–Compiler in Forth

cc64 — Small–C–Compiler in Forth
Philip Zembrod

Einen C–Compiler in Forth zu schreiben, ist zunächst alles andere als naheliegend. Und doch war es dieses Projekt,
cc64 [1], das mich Ende der 80er auf dem C64 zu Forth brachte. Was ich dabei gelernt habe, war ein entscheidender
Schritt auf meinem Weg zum Software–Engineer, und ich stelle heute fest, dass mir das Design von cc64 auch nach fast
40 Jahren immer noch gefällt. In einer losen Artikelfolge möchte ich das Projekt daher ein wenig genauer vorstellen.
Dieser erste Artikel soll einen Überblick über das Design und die Überlegungen geben, die zu den verschiedenen
Designentscheidungen geführt haben.

preprocessor scanner

optimizer assembler linker

source expanded source tokens
parser

abstract syntax tree

object code

code
generator

assembly

executable

assembly

abstract syntax tree

preprocessor scanner

optimizer assembler mini
linker

source expanded source tokens
parser

object code

code
generator

assembly

executable

assembly

runtime
module

new runtime
module

Klassischer C-Compiler

cc64-Vereinfachungen

Abbildung 1: Oben: die Zwischenschritte, die Code bei einem klassischen C–Compiler von Source zum Executable durchläuft.
Unten: was beim cc64 „wegvereinfacht“ wurde.

Warum in Forth

Die Entscheidung, diesen Compiler in Forth zu schreiben,
war eng verbunden mit dem Grund, überhaupt einen C–
Compiler schreiben zu wollen. Mein primärer Computer
war 1989 immer noch ein C64, was er übrigens nicht zu-
letzt wegen dieses Compilerprojektes auch blieb, bis 1992
ein 486 bei mir einzog. Meine Suche nach einem guten
Hochsprachen–Compiler war so alt wie mein C64 selbst.
Ich hatte schon vorher auf der PDP11 unserer Schule Pas-
cal kennengelernt, war begeistert von der Klarheit dieser
strukturierten Sprache, und wollte so etwas auch zuhause
haben, was sich als schwierig herausstellte. Das mit Ab-
stand beste Pascal, das ich nach Jahren gefunden hatte,

war Kyan–Pascal, welches aber recht langsamen Code er-
zeugte, Faktor 35 beim Sieb des Eratosthenes, verglichen
mit handgeschriebenem 6502–Assembler. Ähnliches galt
für einen C–Compiler von Data Becker mit einem Faktor
von 33. Beides waren offenbar P–Code–Compiler, und ich
wollte einen Compiler, der 6502–Maschinencode erzeugte.

Also begann ich mit eigenen Compiler–Experimenten.
Eine meiner Lernquellen über Compiler war das berühm-
te Dragon Book [2]. Eine weitere Lernquelle und eine
Inspiration war das Buch „C Tools“ [3] über den Small–C–
Compiler von Ron Cain und James E. Hendrix, und ich
beschloss, mich an einem Compiler für das gleiche, Small–
C [4] genannte Subset von C zu versuchen: nur int und

14 Forth–Magazin Vierte Dimension 1/2026

cc64 — Small–C–Compiler in Forth

char als grundlegende Datentypen, keine structs oder
unions, keine typedefs oder enums, nur eine Ebene von
Pointern, also keine Pointer of Pointer, und entsprechend
auch nur eindimensionale Arrays. Und kein goto.

Mein erstes Experiment bestand aus Makros für Dirk
Zabels ausgezeichneten Makroassembler ASSI/M, des-
sen Möglichkeiten von Stringbearbeitung von Makropa-
rametern und bedingter Assemblierung viel ermöglichte.
Semantisch kam ich damit schon sehr nah an Small–C
heran, mit Code, der ähnlich schnell war wie Assembler.
Ermutigt begann ich, in der „Sprache“ dieser Makrobi-
bliothek eine Symboltabelle und einen Scanner für einen
echten Compiler zu schreiben, und stellte fest, dass das
Assemblieren dieser „Sprache“ entsetzlich langsam war;
die Makros expandierten im Mittel jede Zeile Quelltext
zu etwa 100 Zeilen. Noch problematischer: Der generierte
Code war schnell, aber lang; es war absehbar, dass ich
mit dem verfügbaren Speicher des C64 nicht auskommen
würde.

Auf der Suche nach einer praxistauglichen Sprache zum
Implementieren meines C–Compilers stieß ich in einer
Anzeige, es muss in der 64‘er oder c‘t gewesen sein, auf
UltraForth, wie das C64–VolksForth damals hieß. Ich be-
stellte es, probierte es aus und stellte fest: nur um einen
Faktor 8 langsamer als Assembler beim Sieb–Benchmark,
und sehr kompakter Code; das sah nach einer passenden
Kombination aus. Also setze ich mein Compiler–Projekt
noch einmal neu auf, diesmal in Forth.

Einfachheit & begrenzter Umfang

Ein wichtiges Designziel war von Anfang an Einfachheit.
Das hatte, neben höheren Zielen wie Eleganz etc., ganz
praktische Gründe: Einen C–Compiler zu schreiben, muss-
te als Hobbyprojekt zeitmäßig neben mein Physikstudium
passen, ich war als Programmierer ja Autodidakt und
hatte nur begrenzte theoretische Kenntnisse über Com-
pilerbau. Der Compiler sollte in die etwa 50 kB freien
Speicher des C64 passen — nachladbare Overlays woll-
te ich vermeiden. Alles Gründe, die Aufgabe so einfach
wie möglich zu gestalten. Zumal ich schon den Anspruch
hatte, dass am Ende etwas herauskommen sollte, das
praktisch nutzbar war, speziell, was den generierten Code
betraf.

Die erste schon erwähnte Einschränkung, die ich des-
halb machte, war die Reduktion des Sprachumfangs auf
Small–C [4].

Eine weitere Einschränkung rührt daher, dass es auf dem
C64 zu jener Zeit keinen Standardlinker und kein Format
für relozierbare Objektdateien gab, jedenfalls kannte ich
keinen. Auch war mir kein frei verfügbarer Assembler
bekannt, den ich gut mit meinem Compiler hätte bündeln
können. Beides selbst zu schreiben, hätte sicher meinen
Zeitrahmen noch mehr gesprengt, als es das Projekt oh-
nehin schon tat. Also verlegte ich mich auf einen von
frühen Versionen von Turbo Pascal inspirierten Modus:

Der Compiler sollte aus den C–Sourcen direkt ausführba-
ren binären Code erzeugen, ohne einen Assembler oder
symbolischen Linker als Zwischenstufen.

Schließlich machte ich beim Präprozessor Abstriche, den
ich auf #define–Befehle nur für einfache Konstanten und
auf #include–Befehle beschränkte. Später stellte ich fest,
dass ich auch noch ein #pragma brauchte, aber das war
es dann.

Abb. 1 zeigt, welche Teile eines klassischen C–Compilers
unter anderem durch diese Einschränkungen und Abstri-
che bei cc64 einfach wegfallen.

1–Pass–Quelle zu Binary

cc64 ist ein 1–Pass–Compiler, er liest den Quelltext nur
einmal ein und erzeugt daraus direkt (fast) ausführbaren
Binärcode. Dieser Code muss absolute Adressen verwen-
den, da der 6502 nur extrem begrenzt relative Adres-
sierung unterstützt (nur bei bedingten Sprüngen), und
um diese Adressen direkt generieren zu können, muss die
Startadresse des Codes schon direkt zu Anfang des Com-
pilierens feststehen. cc64 erreicht das dadurch, dass der
Binärcode an das Ende eines Runtime–Moduls angefügt
wird, welches grundlegende Laufzeitroutinen enthält, wie
z. B. Multiplikation oder Division. Mit dem festen Ende
des Runtime–Moduls ist also die Adresse des ersten zu
generierenden Codes von Anfang an gegeben.

Um einen Sprung mit absoluter Adresse zu generieren,
braucht man die Zieladresse. Bei Sprüngen zurück, z. B.
vom Ende einer Schleife zurück an den Schleifenanfang,
und bei Aufrufen von bereits compilierten Funktionen
sind die Zieladressen bekannt, der Code wurde ja bereits
generiert. Aber wie sieht das aus bei Sprüngen vorwärts,
z. B. hinter das Ende eines if–Zweiges oder einer Schleife,
und bei Aufrufen von noch nicht definierten Funktionen?
In beiden Fällen muss zu noch nicht generiertem Code
gesprungen werden.

Sprünge vorwärts

Um Kontrollstrukturen, also Sprünge innerhalb einer
Funktion, gut handhaben zu können, habe ich mich ent-
schieden, den Binärcode einer Funktion vollständig im
Speicher zu halten und erst auf Diskette zu schreiben,
wenn die Funktion vollständig übersetzt ist. Dies begrenzt
natürlich die maximale Größe, die eine Funktion haben
kann, aber es macht es sehr einfach, während z.B. ein
while compiliert wird, einen Sprung hinter das noch
unbekannte Schleifenende zu erzeugen: Der Sprung er-
hält zunächst einfach die Zieladresse 0, und nachdem der
Schleifenkörper fertig generiert und die Zieladresse da-
hinter bekannt ist, wird diese Adresse einfach über die 0
geschrieben, die sich ja noch im Speicher befindet. Volks-
Forth und viele andere Forth–Systeme machen das beim
Compilieren von Kontrollstrukturen übrigens genauso.

Vorwärts–Aufrufe von noch nicht definierten Funktionen
müssen anders gehandhabt werden. Auch hier wird der
Aufruf zunächst mit 0 als Platzhalter für die Zieladresse

1/2026 Forth–Magazin Vierte Dimension 15

cc64 — Small–C–Compiler in Forth

generiert. Diese Aufrufe mit Platzhalter sind es übri-
gens, weshalb der im Compile–Lauf erzeugte Binärcode
nur „fast“ ausführbar ist. Das Auflösen der Platzhalter
kann im Zweifelsfall erst passieren, nachdem alle Funktio-
nen übersetzt wurden; deshalb merkt sich cc64 in einer
Liste die Adressen, an denen die aufzulösenden Platz-
halter liegen. Diese werden dann in einem minimalisti-
schen „Linker“–Lauf gepatcht, der nichts weiter macht,
als das Runtime–Modul und den compilierten Binärcode
aneinanderzuhängen und eben dabei die Platzhalter der
Vorwärtsreferenzen zu patchen.

Adressen von Variablen

Eine weitere Voraussetzung dafür, direkt lauffähigen Code
zu generieren, ist, dass globalen und statischen Variablen
absolute Adressen zugewiesen werden, sobald diese Va-
riablen im Code definiert werden. Code, der auf diese
Variablen zugreift, soll schließlich gleich mit der richti-
gen absoluten Adresse generiert werden. Um statische
Variablenadressen sofort zuweisen zu können, legt cc64
diese ab dem Ende des verfügbaren Variablenspeichers
absteigend an. Das Ende dieses Speichers liegt nämlich
schon vor Beginn des Compilerlaufes fest, während der
Anfang des Variablenspeichers in der Regel mit dem Ende
des erzeugten Binärcodes zusammenfällt und damit erst
nach dem Compilerlauf bekannt ist.

Damit der Compiler alle diese Adressen gleich zu Be-
ginn der Übersetzung eines Programmes zur Verfügung
hat, habe ich die spezielle Präprozessordirektive #pragma
cc64 eingeführt, die im Programm vor der ersten Zeile
echten Codes stehen muss. #pragma cc64 setzt alle nöti-
gen Adressen sowie den Dateinamen des zu verwendenden
Laufzeitmodules. In der Regel hat jedes Laufzeitmodul
eine zugehörige Include–Datei, in der am Anfang das pas-
sende #pragma cc64 steht, so dass ein Hauptprogramm
nur ein #include des gewünschten Laufzeitmoduls benö-
tigt, damit Compiler und Mini–Linker arbeiten können.

Mit dieser einfachen Schnittstelle zwischen Laufzeitmodul
und Compiler und Mini–Linker ist es einfach, verschiede-
ne Zielplattformen zu definieren und zu implementieren.
Auch ROM–fähiger Code ist möglich.

Bibliotheken via Abkürzung

Bibliotheken, die gerade C ja braucht, sind natürlich eine
Herausforderung, wenn kein regulärer Linker verfügbar ist.
Wie gelangen die Funktionen, die in stdio.h, ctype.h
oder string.h referenziert werden, tatsächlich in ein fer-
tiges Binary, und wie kann der Compiler die Adressen der
Funktionen vor der Übersetzung des Hauptprogrammes
kennen?

Es zeigt sich, dass sich das Konzept des Laufzeitmoduls
zu einem Bibliothekskonzept erweitern lässt, wenn man
eine Einschränkung akzeptiert: Ein regulärer Linker bin-
det nur die Objektdateien aus einer Bibliothek in das
lauffähige Binary ein, die von diesem auch tatsächlich
gebraucht werden, und lässt unbenutzte Objektdateien

weg. Unter Verzicht auf diese Flexibilität wurde Folgendes
möglich:

Wenn cc64 ein Hauptprogramm übersetzt, das keine
main()–Funktion enthält, dann erzeugt der Mini–Linker
kein ausführbares Binary. Stattdessen werden das zu-
grundeliegende Laufzeitmodul und der neu compilierte
Code zu einem neuen Laufzeitmodul gebündelt, auf das
wiederum ein anderes Hauptprogramm aufsetzen kann.
Die exportierten Symbole, speziell die Funktionen, wer-
den in einer speziellen Syntax mit ihren Adressen in die
Headerdatei des neuen Laufzeitmoduls geschrieben. Ein
Programm, das mit diesem erweiterten Laufzeitmodul
compiliert wird, kann jetzt diese exportierten Funktionen
als Bibliothek nutzen.

Das Problem, dass ein gegebenes Binary mit diesem Bi-
bliotheksmodell unter Umständen ungenutze Bibliotheks-
funktionen enthält, lässt sich mit der Behelfslösung um-
gehen, ein angepasstes Laufzeitmodul für dieses Binary
zu erzeugen mit nur den verwendeten Bibliothekssourcen.

Zukünftig könnte die Schichtenarchitektur von cc64, spezi-
ell die Schnittstelle von v–assembler (s. u.), eine Möglich-
keit bieten, ein forth–gestütztes Format für relozierbaren
Code zu entwickeln und damit flexibleres Linken zu er-
möglichen.

Sourcenüberblick

Als Abschluss dieses Übersichtartikels will ich versuchen,
einen Überblick über die Architektur zu geben, indem
ich die wichtigsten Sourcen kurz beschreibe. Vergleiche
auch Abb. 2.

symboltable.fth

enthält die globale und die lokale Symboltabelle. Beide
teilen sich einen Speicherblock, wobei die globale Sym-
boltabelle vom unteren Ende des Blocks nach oben und
die lokale Symboltabelle vom oberen Ende nach unten
wächst. Die globale Symboltabelle hat zusätzlich eine
Hashtabelle für schnelleren Zugriff.

Das Interface der Symboltabelle hat Worte zum Setzen
und Suchen lokaler und globaler Variablen sowie von
Funktionen und Funktionsparametern, und außerdem
Worte zum Öffnen und Schließen von Geltungsbereichen
lokaler Variablen.

input.fth

liest zeilenweise die C–Sourcen, ruft den Präprozessor,
bietet dem Scanner eine zeichenweise Sicht auf die Sour-
cen, und regelt das Öffnen, Schließen und Lesen von
Include–Dateien.

16 Forth–Magazin Vierte Dimension 1/2026

cc64 — Small–C–Compiler in Forth

Source:
“a + 2 * b”

Tokens:

#id# “a”
#oper# <+>
#number 2
#oper# <*>
#id# “b”

Scanner

do-id
do-number
do-id
do-mult
do-add

0x99e .lda
.pha

0x99c .lda
2 .mult#

.add

“a” findglobal
-> 0x99e

“b” findglobal
-> 0x99c

Parser

Codegen

v-Assembler

Symtab

Abbildung 2: Am Beispiel eines einfachen Ausdrucks wird
der Fluss des Codes vom Quelltext über eine Tokensequenz
und eine Folge von Codegen–Aufrufen bis zum Aufruf der
entsprechenden Assembler–Templates gezeigt. Erkennbar ist,
wie der Parser nach der Punkt–vor–Strich–Regel den Infix–
Ausdruck in Codegen–Aufrufe für stackbasierten Postfix–Code
umsetzt, und wie auf v–Assembler–Ebene die Multiplikati-
on mit dem konstanten Wert 2 umgesetzt wird: Die 2 wird
nicht erst auf den Stapel geschoben, sondern direkt an .mult#
übergeben, das den Akkumulator mit einem Immediate–Wert
multipliziert, ohne den Stapel zu bemühen.

preprocess.fth

Der cc64–Präprozessor ist sehr einfach und ein wenig ein
Hack. Er verarbeitet keine ganzen Quelldateien, sondern
wird von input.fth jeweils für nur eine Quelltextzeile
gerufen. Und er versteht nur die folgenden Direktiven:

#include öffnet, via input.fth, eine Include–Datei.
#define ist besonders hacky: Es erzeugt reguläre C–
Konstanten in der globalen Symboltabelle, d. h., es führt
keine Makro–Substitution durch.
#pragma cc64 wählt und konfiguriert das zu verwenden-
de Laufzeitmodul und setzt die absoluten Adressbereiche
für Code und Variablen, damit der Codegenerator direkt
lauffähigen Binärcode erzeugen kann, wie im Abschnitt
„1–Pass–Quelle zu Binary“ beschrieben.

scanner.fth

Der Scanner, zuständig für die lexikalische Analyse, zer-
legt den C–Quelltext in Tokens, d. h. in Schlüsselworte,
Identifier, Zahlen, Operatoren und sonstige Zeichen. Sein
Interface für den Parser besteht aus 4 Worten:

thisword liefert das aktuelle Token, ohne es zu „ver-
brauchen“

accept „verbraucht“ das aktuelle Token und geht wei-
ter zum nächsten Token

mark merkt sich die aktuelle Tokenposition

advanced? prüft, ob seit dem letzten mark Tokens ver-
braucht wurden oder ob thisword immer
noch auf dieselbe Stelle im Quelltext zeigt.

parser.fth

Der Parser, zuständig für die syntaktische Analyse, ist
bei cc64 ein Top–Down–Parser nach dem Prinzip des re-
kursiven Abstiegs (recursive decent). Er besteht aus drei
Teilen: für Ausdrücke, für Befehle, d. h. im Wesentlichen
für Kontrollstrukturen, und für Definitionen.

Die Syntax von Sprachen wie C folgt den Regeln einer
sogenannten kontextfreien Grammatik, und syntaktisch
analysierter C–Quelltext hat die Struktur eines Baumes,
genannt abstrakter Syntaxbaum. Dass cc64 direkt beim
Parsen des Quelltextes fast ausführbaren Code erzeugt,
bedeutet, dass der abstrakte Syntaxbaum nicht als Da-
tenstruktur im Speicher materialisiert wird. Stattdessen
werden die Daten jedes logischen Baumknotens sofort an
den Codegenerator weitergegeben, der Syntaxbaum wird
quasi beim Aufbauen sofort wieder konsumiert. Dies ist
eine weitere Abkürzung, die cc64 nimmt und die auch in
Abb. 1 dargestellt ist.

codegen.fth

enthält Logik zum Erzeugen von Code für C–Ausdrücke.
Die Codegenerierung für Ausdrücke erwies sich als deut-
lich komplexer als die für Kontrollstrukturen, deswegen
ein separates Modul.

1/2026 Forth–Magazin Vierte Dimension 17

cc64 — Small–C–Compiler in Forth

Codegen ist parallel zum Parser für Ausdrücke aufgebaut.
Viele Parserworte haben ein Partnerwort im Codegene-
rator. In der Regel ist ein solches Parserwort für eine
bestimmte Grammatikregel zuständig, etwa für Additi-
on. Wenn das Parserwort sum den +–Operator für eine
Addition findet, ruft es das Codegen–Wort do–add auf,
das mithilfe von Templates aus v–assembler.fth den
Binärcode für diese Addition erzeugt.

Codegen berechnet auch konstante Ausdrücke und die
konstanten Anteile von Ausdrücken, soweit sie zur Com-
pilezeit bereits ermittelt werden können.

Code für Kontrollstrukturen ist wesentlich einfacher als
Code für Ausdrücke und kann vom Parser direkt mittels
v-assembler–Templates erzeugt werden.

v–assembler.fth

enthält die untere Ebene des Codegenerators und bietet
als Interface so etwas wie eine virtuelle CPU mit einem
16–Bit–Akkumulator, implementiert mit binären 6502–
Code–Templates, die mit VolksForths 6502–Assembler
erstellt sind. Die virtuelle CPU „erbt“ den Hardware–
Stack des 6502, der für den Stack–Code genutzt wird, in
den C–Infix–Ausdrücke übersetzt werden. Außerdem gibt
es ein virtuelles Stack–Frame–Register für einen Software–
Stack, auf dem lokale Variable und Funktionsparameter
abgelegt werden.

minilinker.fth

enthält den bereits erwähnten Mini–Linker. Parser &
Codegen erzeugen zwei Dateien:

%%code enthält den erzeugten Binärcode, und %%init
enthält die Initialisierungswerte für statische Variable.
Laufzeitmodule enthalten entsprechend auch eine Co-
dedatei (*.o) und eine Initialisierungsdatei (*.i). Wenn
der Mini–Linker ein ausführbares Programm — mittels
main()–Funktion — erstellt, werden alle diese 4 Dateien
in einer einzigen Datei verbunden. Wenn eine neue Bi-
bliothek erzeugt wird — ohne main()–Funktion — dann
werden aus beiden Codedateien eine neue o–Datei und aus
beiden Initialisierungsdateien eine neue i–Datei erzeugt.

In beiden Fällen werden die Vorwärtsreferenzen der Funk-
tionsaufrufe aufgelöst, indem die Nullen, die als Zieladres-
senplatzhalter in Sprüngen stehen, deren Zielfunktion
beim Compilieren noch nicht definiert war, durch die
richtige Funktionsadresse ersetzt werden.

Beim Erzeugen von ausführbaren Programmen wird au-
ßerdem die Adresse der main()–Funktion und einige an-
dere Adressen an definierten Stellen im Runtime–Modul

eingetragen, damit dieses beim Start die statischen Varia-
blen korrekt initialisieren und dann die main()–Funktion
aufrufen kann.

Für eine neue Bibliothek wird außerdem eine Headerdatei
(*.h) erzeugt mit der korrekten #pragma cc64–Direktive
und mit Definitionen für alle Symbole, die die Biblio-
thek exportiert. Für diese Symbole nutzt cc64 eine Nicht–
Standard–Syntax: Wird ein globales Symbol mit dem
Operator *= initialisiert, wird der Initialisierungswert als
absolute Adresse der Variable oder Funktion interpretiert.
Ein Hack, der aber sehr gut funktioniert.

invoke.fth

enthält das Top–Level–Wort cc , welches Compiler und
Mini–Linker aufruft und damit alles bündelt.

shell.fth

schließlich macht alles für den Benutzer zugänglich. Es
definiert ein Vokabular mit einem Alias auf cc sowie mit
einigen nützlichen Worten wie dir , list oder help und,
sofern vorhanden, auch einem Alias zum Aufruf eines Edi-
tors. In diesem Vokabular befindet sich der Benutzer nach
dem Start von cc64, es stellt also die Benutzeroberfläche
dar.

Weitere Sourcen

Es gibt noch eine Reihe weiterer Sourcen, die z. B. Dinge
wie Speicher– und Listenverwaltung, Stringverarbeitung
und Stringtabellen, Dateiverwaltung, Fehlermeldungen
und noch ein bisschen dies und das bereitstellen und auf
die ich vielleicht in einem späteren Artikel zu sprechen
komme.

Anmerkung

Ich betreibe momentan keinen aktiven C64–Arbeitsplatz.
Die Entwicklung läuft komplett im Linux–Editor und auf
make–automatisierten Emulatoren.

Für einen echten Aufbau habe ich aber noch zwei C64 mit
1541 und einen Dell 2001FP mit FBAS– und S–Video–
Eingang; selten bei LCD–Monitoren.

Quellen

[1] http://github.com/pzembrod/cc64
[2] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, „Com-
pilers, Principles, Techniques and Tools“ aka The Dragon
Book, 1986, Addison–Wesley, ISBN 0–201–10194–7
[3] „Dr. Dobb‘s Journal C Tools“, 1986, Markt–und–
Technik–Verlag, ISBN 3–89090–190–5
[4] https://en.wikipedia.org/wiki/Small-C

18 Forth–Magazin Vierte Dimension 1/2026

http://github.com/pzembrod/cc64
https://en.wikipedia.org/wiki/Small-C

CASE — Ein ganz einfacher Fall

CASE — Ein ganz einfacher Fall1

Klaus Schleisiek

Forth hat in seinem Kern kein CASE–Statement. Dies etwa nicht deshalb, weil es besonders schwierig wäre, oder weil
man es vergessen hätte; nein, der Hauptgrund, warum es nicht im Kern enthalten ist, besteht darin, dass es einfach zu
selten benötigt wird, so dass es sinnlos ist, es immer „mitzuschleppen“ — ganz abgesehen davon, dass es grundsätzlich
drei verschiedene Arten von CASE–Statements gibt und deshalb nach den murphischen Gesetzen im gegebenen Fall
immer der falsche Typus zur Hand wäre.

Im Folgenden werde ich die simpelste Art eines CASE–Statements vorstellen, die ich kenne; die in all den Fällen eingesetzt
werden kann, wenn z. B. in Abhängigkeit von einzelnen Keys von der Tastatur einige wenige, unterschiedliche Aktionen
ausgelöst werden sollen, wie dies z. B. in dem Forth–Wort EXPECT notwendig ist — dort nämlich die Spezialbehandlung
von <space> , <backspace> und <return> .

Zunächst aber etwas Theorie, nämlich die drei verschie-
denen Typen von CASE–Statements:

positional case Im Falle 0 soll die eine, im Falle 1 eine
andere, im Falle 2 noch eine andere usw. Aktion ausge-
löst werden. D. h., die einzelnen Fälle sind fortlaufend
„durchnummeriert“. Darauf will ich heute nicht beson-
ders eingehen, obwohl dieser Fall in Forth einfach und
effizient zu lösen ist. Aber merke: Der erste Fall ist
Fall 0, wie überhaupt in Forth grundsätzlich ab null
gezählt wird — wer das nicht beherzigt, der zahlt
dadurch, dass er diverse 1- und 1+ in seinem Code
versprenkeln muss.

keyed case Im Falle 12 soll eine, im Falle 534 eine ande-
re usw. Aktion ausgelöst werden, und wenn keiner der
aufgeführten Fälle zutrifft, dann irgendeine Standard-
aktion. Es werden unterschiedliche Code–Sequenzen
ausgeführt in Abhängigkeit einer Zahl, die mit vor-
gegebenen, gestreuten Werten verglichen wird. Eine
solche Struktur kann in einfacher Weise mit dem Wort
case? und den üblichen Kontrollstrukturen implemen-
tiert werden. Davon später mehr.

range case Im Falle 13 . . . 20 dies, bei 21 . . . 39 das, etc.
und ansonsten default. Selten gebraucht.

Als Motivation nun zunächst ein kleines Spiel, aus dem
die Benutzung von case? deutlich werden sollte.

013 CONSTANT <CR>
: wastun (Zahl - Flag)

ASCII j case? IF ." ja" False EXIT THEN
ASCII n case? IF ." nein" False EXIT THEN

<CR> case? IF ." fertig" True EXIT THEN
emit ." ungültig" False ;

: Spiel BEGIN KEY wastun UNTIL ;

Ich hoffe, dass es ziemlich offensichtlich ist, was passiert;
wers nicht durchschaut, muss halt ausprobieren, dass ihn
nur ein <cr> aus dem Spiel befreit.

Ungewohnt mag die Benutzung von EXIT erscheinen (in
FIG–Systemen ;S genannt). Mit EXIT wird wastun ver-
lassen und als nächstes wird dann wieder ein logischer
Wert UNTIL zum Fraß vorgeworfen. Allgemein kann EXIT
benutzt werden, um ELSE–Verzweigungen zu vermeiden.

Merke: Jeder ELSE–Zweig, der nicht vorkommt, braucht
auch nicht durchdacht zu werden, wenn man sich später
einmal das Programm anschaut, oder wenn etwa jemand
anderes es verstehen soll. Wers nicht einsieht, der erin-
nere sich einmal, welche Editierbemühungen es kostet,
eine verschachtelte Struktur deutlich zu machen — viel
einfacher ist das Denken in geschichteten Strukturen.
Psychologische Untersuchungen legen den Schluss nahe,
dass der Mensch mit fünf bis sieben abstrakten Objekten
„ jonglieren“ kann. Das bestätigt die gefühlsmäßige Erfah-
rung, dass sich gutes Forth durch viele kurze Definitionen
auszeichnet, die aufeinander aufbauen — die Alternative
ist „Spaghetticode“, Nährboden zahlreicher pretty printer
und anderer Analyseprogramme.

Was False und True im Programm zu suchen haben? —
das sind simple Konstanten.

0 CONSTANT False 1 CONSTANT True

Ähem, ab dem 83er–Standard gilt allerdings:

-1 CONSTANT True

Bevor ich nun die Definition von case? hinschreibe, zu-
nächst einmal einige inzwischen weitverbreitete Worte,
um den Stack zu manipulieren; die werden so häufig
gebraucht, dass es sich lohnt, sie mit in den Kern zu
packen.

: nip (n0 n1 - n1) swap drop ;
: under (n0 n1 - n1 n0 n1) swap over ;
: stash (n0 n1 - n0 n0 n1) over swap ;

Nach diesen ganzen Vorbereitungen denn nun:

: case? (n0 n1 - tf / n0 ff)
over = dup IF nip THEN ;

Zwei Zahlen liegen auf dem Stack, n0 ist meine „Eingabe“,
die einen Fall auswählen soll und n1 ist ein Vergleichs-
wert. Stimmen n0 und n1 überein, dann habe ich meinen
gesuchten Fall gefunden und case? kommt einfach mit
der „True Flag“ tf zurück, sodass das im Allgemeinen
folgende IF passiert werden kann; stimmen n0 und n1
nicht überein, nun, dann wird n0 für weitere Verglei-
che aufbewahrt und eine „False Flag“ ff ermöglicht das
Überspringen des folgenden IF’s.

1 (c) 1984, K. Schleisiek. Reprint in dieser Ausgabe wurde vom Autor gestattet.

1/2026 Forth–Magazin Vierte Dimension 19

Forth–Projekte auf Codeberg

Forth–Projekte auf Codeberg
Rezension

Codeberg ist eine gemeinnützige, communitygetriebene Plattform für die Zusammenarbeit und das Hosting von
Git–Repositories, speziell für freie und quelloffene Softwareprojekte, basiert auf dem Open–Source–Tool Forgejo, und
wird vom Codeberg e.V. betrieben. https://de.wikipedia.org/wiki/Codeberg

Carsten Strotmann war dort für euch unterwegs. Hier seine Funde im Dezember 2025 und meine Notizen dazu.

Akumuli Stack oriented programming language in-
spired by forth written in nim https://
codeberg.org/tttardigrado/Akumuli

Kostprobe gefällig?

###
Calculator
-
Input, Output, Stack, Alt Stack, Ints, Floats
###

Takes a value as an argument
Checks if it is equal to the top value
of the alt stack
(Without consuming that stack value)
(x)+(y) -b-> (x.y)+(_) -d-> (x.y.y)+(_)
-c-> (x.y)+(y) -e-> (x==y)+(y)
@ is

back dup cross eq
;

Get the first value
’’ ’:’ ’A’ echo input toF

Get the second value
’’ ’:’ ’B’ echo input toF

Get operation to the alt stk
’’ ’:’ ’p’ ’O’ echo input cross

’+’ is if
add print

else ’-’ is if
swap sub print

else ’*’ is if
mul print

else ’/’ is if
swap div print

else
’\n’ ’r’ ’o’ ’r’ ’r’ ’E’ echo

;;;;

Und da sage noch einer, Forth sei esoterisch . . .

forthstrap A simple Forth with the goal of being used
in the Linux bootstrap process. https://
codeberg.org/notgull/forthstrap

“forthstrap starts from a hex0 loader image. This
image is highly platform dependent; however, it

is only required to implement the Forth inter-
preter, compiler and a small number of built–in
words. In addition, the resulting Forth interpreter
is somewhat slow. From here, we eventually move
to: Jumping to Protected Mode from Real Mode
(where applicable). Moving to a more advanced in-
terpreter with better performance. Implementing
memory management, virtual memory, paging and
file system access. Setting up a small operating sys-
tem, with a user mode and basic drivers. Setting
up a more advanced Forth compiler, used to com-
pile userspace applications. A simple userspace
with some Unix–like utilities, like an assembler
and a linker. Setting up a C compiler . . . Inspi-
ration is taken from sectorforth, jonesforth and
eulex.”

Ambitioniertes Vorhaben, oder? Mal sehen, was draus
wird.

Flood–Game https://codeberg.org/krisbug/
forthgames/src/branch/main/flood.fth

“The goal of the game is to fill the most tiles with
a single color.”

\␣1-5:␣Fill␣with␣color
\␣q:␣Quit
\␣Type␣PLAY␣to␣play
...

55 Zeilen kompakter Forth–Code. Hübsch gemacht von
Krisbug („I make stuff sometimes“). Um das in Gforth
laufen zu lassen, braucht es etwas Anpassung. Sein
INCLUDE common.fth gibts da so ja nicht und so fehlt
sein RAND und schon geht das Grübeln los — ein schönes
Puzzle. Krisbug hat da ja noch mehr eingestellt, mal se-
hen, ob jemand fündig wird und das comon.fth findet.

BugForth Experimental Forth system written in
Forth. https://codeberg.org/krisbug/
bugforth

Auch von Krisbug — ein fleißiger Tscheche, wie mir
scheint. Er benutzt Gforth dabei und M4 dafür.

llforth Minimalist, highly extensible lua flavoured
forth https://codeberg.org/ufrag/
llforth

Sehr speziell für Lua–Freunde. Ein interessanter Weg,
ein Forth hochzuziehen mittels Lua in C.

20 Forth–Magazin Vierte Dimension 1/2026

https://de.wikipedia.org/wiki/Codeberg
https://codeberg.org/tttardigrado/Akumuli
https://codeberg.org/tttardigrado/Akumuli
https://codeberg.org/notgull/forthstrap
https://codeberg.org/notgull/forthstrap
https://codeberg.org/krisbug/forthgames/src/branch/main/flood.fth
https://codeberg.org/krisbug/forthgames/src/branch/main/flood.fth
https://codeberg.org/krisbug/bugforth
https://codeberg.org/krisbug/bugforth
https://codeberg.org/ufrag/llforth
https://codeberg.org/ufrag/llforth

Forth–Projekte auf Codeberg

BLEcli Bluetooth LE command line interface. An
iOS app that allows command line program-
ming Bluetooth LE using a Forth engine.
https://codeberg.org/cayeric/BLEcli

“The command line interface commands can be
divided into three parts, each corresponding to a
dedicated functionality:

system–specific words: SYS! , SYS@ , SYS? — send
out a message to the system interface, retrieve
incoming system messages, get the number of still
pending messages

bluetooth specific words: scan-on , scan-off ,
scanner : starts resp. ends listening to Bluetooth
LE advertising packages, print out the name of
advertising devices general

Forth words: the integrated Forth engine imple-
ments a 16–bit Forth comprising of control words,
in–/output, arithmetic, stack handling.

See Reference.md for a list of available Forth
words . . . ”

vulpforth Forth with some rather odd design decisions
https://codeberg.org/xfnw/vulpforth

Assembliert. “takes inspiration from: miniforth
(dtc using lods, dedicating a register to the value
at the top of the working stack), duskos . . . ”

CHIP–8 Interpreter written in Forth. https://
codeberg.org/krisbug/chip4th

“CHIP–8 is a virtual machine and interpreted pro-
gramming language designed in 1977 by RCA
engineer Joe Weisbecker for the COSMAC VIP
microcomputer, intended to simplify video game
development on 8–bit systems. It operates as a
platform–independent environment, making it a
precursor to modern virtual machines like Java
VM or .NET CLR. The language features a 64×32
pixel monochrome display, a 16–key hexadecimal
keypad, 16 general–purpose 8–bit registers, one
16–bit index register, and a program counter, with
instructions stored as 16–bit opcodes. CHIP–8
programs are written in a low–level, assembler–
like syntax and executed by an interpreter, which

allows the same code to run across different hard-
ware platforms as long as a CHIP–8 interpreter
is available. Although originally used on kits like
the COSMAC VIP and Telmac 1800, CHIP–8 has
seen revivals on devices such as the HP–48 graph-
ing calculator and remains a popular educational
project for learning emulation and virtual machine
implementation . . . [Grok]

Mir scheint, der fleißige Herr Krisbug hat studiert, wie
ein Chip–8 gemacht ist, und siehe da, geht auch in Forth.

forth–gen Small Forth–based OS (aarch64 und x86_64):
https://codeberg.org/rune-os/forth-
gen

“Forth OS is a portable, bare–metal operating
system designed from the ground up around the
principles of the Forth programming language. Its
architecture is guided by three core tenets:

Portability: The kernel is designed to be largely
architecture–agnostic, with a clean separation be-
tween generic code and hardware–specific imple-
mentations.

Security: The system employs a dual–stack model,
a classic and robust design that provides strong
protection against common memory corruption
exploits.

Simplicity: The design favors clarity and minimal-
ism, using a small set of powerful abstractions to
build a complete system . . . ”

Danny Milosavljevic hat da viel Mühe in die Doku-
mentation gesteckt. Sehr beachtliches Werk. Er bezieht
sich auf das Buch: Intel® 64 and IA–32 Architectures
Software Developer’s Manual Volume 1: Basic Architec-
ture. Wer das also nachvollziehen möchte, findet hier viele
Anregungen.

Nucleus Commandline–based interactive 16–bit Forth
system for 8–bit AVR microcontroller https:
//codeberg.org/cayeric/NUCLEUS

Cay–Eric Schimanski versucht hier, auf dem MacOS
einem ATMega Forth beizubringen — amForth, Camel-
Forth und JonesForth stehen Pate.

mk

1/2026 Forth–Magazin Vierte Dimension 21

https://codeberg.org/cayeric/BLEcli
https://codeberg.org/xfnw/vulpforth
https://codeberg.org/krisbug/chip4th
https://codeberg.org/krisbug/chip4th
https://codeberg.org/rune-os/forth-gen
https://codeberg.org/rune-os/forth-gen
https://codeberg.org/cayeric/NUCLEUS
https://codeberg.org/cayeric/NUCLEUS

Von Fahrenheit, Celsius und der Bruchrechnung

Von Fahrenheit, Celsius und der Bruchrechnung
Euer Kolumnist

Bei unseren Nachbarn im Westen war in den ForthWords_2025–10 eine hübsche Aufgabe gestellt worden. Der bekannte
Code zur Umrechnung von Temperaturen in Celsius nach Fahrenheit und umgekehrt sollte für genauere Ergebnisse
umgeschrieben werden, z. B. für Zehntelgrade. Die Berechnung der Ausgabe als Dezimalzahl mit Nachkommastellen
sollte ohne Gleitkommazahlen mit Brüchen erfolgen und war die Zusatzaufgabe.

Abonniert die ForthWords, es kommen dort immer wieder schöne Aufgaben zum Mitmachen.

Es gab tatsächlich eine ganze Reihe von Einsendungen:
Bryan Tevreden, Henny Luijkx, Jeroen Hoekstra,
Willem Jager, Willem Ouwerkerk und auch Ul-
rich Hoffmann haben die Aufgabe eigentlich alle recht
ähnlich gelöst.

C>F und zurück

Im Prinzip sahen die Lösungen so aus1, einmal ganzzahlig
und dann in Form von Brüchen:

decimal
: C>F (C -- F) 9 5 */ 32 + ;
: F>C (F -- C) 32 - 5 9 */ ;

\ t/n numerator/denominator
: C>>F (ct cn -- ft fn)

5 * swap 9 * over 32 * + swap ;

: F>>C (ft fn -- ct cn)
tuck 32 * - 5 * swap 9 * ;

Einige haben statt swap und tuck auf dem Stack mit >r
und r> jongliert, um den einen in den anderen Bruch
umzuwandeln.

.Q

Auch der zweite Teil wurde ähnlich gelöst. Man dividiert
zunächst den Zähler (numerator) durch den Nenner (de-
nominator), schreibt einen Punkt und verfährt mit dem
Rest wie bei der manuellen Division so oft, wie Nachkom-
mastellen gefordert sind.

\ Print t/n (the quotient of t and n)
\ as a decimal fraction

: .Q (t n #dec --)
\ #dec = number of decimal places
>r
tuck >r s>d r>
sm/rem 0 .r \ print signed prefix
[char] . emit
abs
r> 0 ?DO \ print out places
(t n) over >r 10 um*
(t d) r> um/mod 0 .r
(t n) LOOP
2drop ;

Wem tuck fehlt, der macht sich eins. Sofern locals exis-
tieren in Form der geschweiften Klammern, ist das sehr
einfach:

: tuck { a b -- b a b } b a b ;

Aber der Klassiker tut es natürlich auch:

: tuck (a b -- b a b) swap over ;

Oder man benutzt need in der Hoffnung, ein modernes
Forth zu haben, das mit Bibliotheken daherkommt.

Und natürlich muss man sich in die Divisionsroutinen
seines Forthsystems vertiefen, um die richtigen herauszu-
finden. Aber darum ging es ja in der Aufgabe. :)

Beifang <rtn>

Mit ins Netz gegangen ist mir dabei noch Ulrichs Art der
Sichtprüfung einer Zahlenausgabe (s. Listing).

: <rtn> (<num> --)
bl word count ." =?= " type cr ;

21 c>f . <rtn> 69
22 c>f . <rtn> 71
...

Das ist ja interessant. Wir probieren:

2 10 * cr . <rtn> 20
20 =?= 20
ok

3 10 * cr . <rtn> 40
30 =?= 40
ok

2*10 soll 20 ergeben. Tut es offensichtlich! Und beim
zweiten Beispiel soll 40 herauskommen, was offensichtlich
nicht der Fall ist — da stimmt wohl was nicht in der
Multiplikation. Und man kann in die Fehlersuche gehen.
Einfach und verblüffend.

Die Phrase bl word nimmt die nächst folgende Zeichen-
kette aus dem input stream und liefert dessen Adresse und
Länge an count ab. Die dann von type gedruckt wird.
Man hat praktisch eine String–Konstante eingebaut, die
mit der gewünschten Ausgabe vergleichen werden kann.
Herrlich, oder?

1 Habe mal Ulrichs Beispiel genommen. Er benutzte Gforth, das habe ich auch hier.

22 Forth–Magazin Vierte Dimension 1/2026

Von Fahrenheit, Celsius und der Bruchrechnung

Listing

1 \ C>>F F>>C .Q Albert’s challenge 8/2025 uho 2025-10-11
2
3 \ see breuken.pdf
4
5 \ F = 9/5 * C + 32
6 \ C = (F-32) * 5/9
7
8 need .r \ 0 .r allows to print numbers without trailing space
9 need tuck

10
11 decimal
12 : C>F (C -- F) 9 5 */ 32 + ;
13 : F>C (F -- C) 32 - 5 9 */ ;
14
15 \ t/n numerator/denominator
16 : C>>F (ct cn -- ft fn) 5 * swap 9 * over 32 * + swap ;
17
18 { 0 1 c>>f / -> 32 }
19 { 30 1 c>>f / -> 86 }
20 { 1000 10 c>>f / -> 212 }
21
22
23 : F>>C (ft fn -- ct cn) tuck 32 * - 5 * swap 9 * ;
24
25 { 86 1 f>>c / -> 30 }
26 { 32 1 f>>c / -> 0 }
27 { 388 2 f>>c / -> 90 }
28
29
30 \ Print t/n (the quotient of t and n) as a decimal fraction
31 : .Q (t n #dec --) \ #dec = number of decimal places
32 >r
33 tuck >r s>d r> sm/rem 0 .r [char] . emit \ print signed prefix
34 abs
35 r> 0 ?DO (t n) over >r 10 um* (t d) r> um/mod 0 .r (t n) LOOP \ print out places
36 2drop ;
37
38
39 \ Examples
40
41 : <rtn> (<num> --) bl word count ." =?= " type cr ;
42
43 21 c>f . <rtn> 69
44 22 c>f . <rtn> 71
45
46 21 1 c>>f 3 .q <rtn> 69,800
47 22 1 c>>f 4 .q <rtn> 71.6000
48 215 10 c>>f 5 .q <rtn> 70.70000
49 707 10 f>>c 6 .q <rtn> 21.500000
50 355 113 32 .q <rtn> 3.14159292035398230088495575221238
51 1000 998 32 .q <rtn> 1.00200400801603206412825651302605
52
53 22 7 4 .q <rtn> 3.1428
54 -5 2 4 .q <rtn> -2.5000
55 23 1 f>>c 4 .q <rtn> -5.0000
56 194 10 f>>c 4 .q <rtn> -7.0000

1/2026 Forth–Magazin Vierte Dimension 23

Von Fahrenheit, Celsius und der Bruchrechnung

Historisches am Rande

Wenn ich mich in sowas vertiefe, interessieren mich auch
immer die beteiligten Leute hinter den altehrwürdigen
Namen und die verschlungenen Pfade ihrer Wissenschaft
und die Vokabeln, die sie wählten.

Temperatur

Ein Maß dafür, wie „heiß“ oder „kalt“ etwas ist. Genau-
er gesagt beschreibt sie die durchschnittliche kinetische
Energie der Teilchen (Atome/Moleküle) in einem Stoff
oder System. Und jeder Körper leuchtet Infrarot. Je wär-
mer ein Objekt (z. B. Stirn, Trommelfell, heiße Pfanne),
desto intensiver seine Infrarotstrahlung.2

Doch bis zu dieser Betrachtungsweise war es ein langer
Weg. Im Alltag benutzen wir heute beides selbstverständ-
lich nebeneinander, physikalische Thermometer wie die
von Fahrenheit oder Celsius und elektronische digitale
Thermometer. Doch das war nicht immer so.

Unser Wort Temperatur stammt — wie in fast allen
europäischen Sprachen — aus dem Lateinischen. „Tem-
peratura“ bedeutet wörtlich „die richtige Mischung“ oder
„das Gemischte“ — wie noch bei den Tempera–Farben in
Gebrauch.3

„Temperare“ selbst kommt wahrscheinlich von einer indo-
germanischen Wurzel temp–/tem– mit der Grundbedeu-
tung „(ab)schneiden, abmessen, in richtiger Weise teilen“,
verwandt mit lateinisch tempus „Zeit, Zeitabschnitt“ —
weil Zeit „abgemessen“ wird.

Von der Antike bis zum Mittelalter wurde unter „Tempe-
ratur“ das richtige Mischungsverhältnis der vier Säfte im
Körper4 nach der Humoralpathologie verstanden. Erst
im 19. Jahrhundert wurde sie durch die Zellpathologie5
und die Entdeckung von Bakterien, Viren usw. endgültig
abgelöst. Trotzdem leben viele Begriffe weiter — „chole-
risch“, „melancholisch“, „blutarm“, „gute/schlechte Laune“
= „guter/schlechter Saft“.

Eine „gute Temperatur“ bedeutete Gesundheit, Ausgegli-
chenheit (daher auch „temperamentvoll“ = gut gemischt).

Erst mit der neuzeitlichen Physik brauchte man ein Wort
für den „gemessenen Grad der Wärme oder Kälte“ und hat
eine „Mischung“ in der Materie vermutet, nannte Geräte
zur Objektivierung der sonst nur erfühlten Materiezu-
stände „Mischungsanzeiger“. Der Begriff „Thermoskop“
fiel. Und propagierte von Galilei und seinen Schülern
bis zu Fahrenheit, Celsius und Kelvin.6

Foto: Chatsam

Abbildung 1: Musée des Arts et Métiers: Thermoscope de
galilée 1592

Vom Thermoskop zum Thermometer

Galilei hat kein Thermometer im heutigen Sinne er-
funden, mit Skala und genauen Gradzahlen, sondern das
erste bekannte Thermoskop (ca. 1593–1600) — ein Gerät,
das Temperaturänderungen sichtbar, aber noch nicht ge-
nau messbar machte. Es war ein langes, dünnes Glasrohr,
mit einer Luft gefüllten faustgroßen Glaskugel oben und
unten offen. Das offene Ende wurde in ein Gefäß mit
farbigem Wasser getaucht. Durch leichtes Erwärmen der
Glaskugel mit der Hand wurde ein Teil der Luft ausgetrie-
ben. Lies man los stieg das Wasser ein Stück ins Glasrohr
hoch und blieb dort stehen. Je kälter es wurde, desto hö-
her stieg die Wassersäule und umgekehrt. Galileis Schüler
und die Accademia del Cimento7 in Florenz bauten das
Gerät weiter. Sie drehten es um. Die Glaskugel kam nach
unten, das Rohr nach oben, aber verschlossen. Sie füllten
es vollständig mit Alkohol und brachten erste Skalen an.

2 Wellenlänge ca. 5–14 µm; Planck’sches Strahlungsgesetz.
3 Tempera–Farben = wasserlösliche, schnell trocknende, matte Farben mit einem emulsifizierenden Bindemittel (meist Eigelb) +
Farbpigment. Sie ergeben eine sehr präzise, detailreiche Malweise und eine unverwechselbare, samtig–matte Oberfläche.

4 Blut, Schleim, gelbe Galle, schwarze Galle.
5 Rudolf Virchow, 1858
6 Galileo di Vincenzo Bonaiuti de’ Galilei, *15. Februar 1564 in Pisa, Italien. Daniel Gabriel Fahrenheit, *24. Mai 1686 in
Danzig (heute Gdańsk, Polen). Anders Celsius, *27. November 1701 in Uppsala, Schweden. William Thomson, 1. Baron Kelvin,
*26. Juni 1824 in Belfast (heute Nordirland).

7 Die Accademia del Cimento war 1657–1667 in Florenz die weltweit erste „reine Experimentier–Akademie“ unter Medici–Schirmherrschaft
und ein wichtiger Wegbereiter der modernen Wissenschaft. Hat leider nur 10 Jahre Bestand gehabt, die Kirche war dagegen!

24 Forth–Magazin Vierte Dimension 1/2026

Von Fahrenheit, Celsius und der Bruchrechnung

Das war dann schon der direkte Vorläufer der modernen
Flüssigkeitsthermometer von Fahrenheit und Celsius.

Fahrenheit

Über ihn gibs viel zu lesen im Internet. Danach wurde
er Glasbläser aus einer Mischung aus Neugier, Notwen-
digkeit und den Anforderungen seiner wissenschaftlichen
Arbeit — ein Autodidakt. Doch welche Begegnungen da-
zu führten, dass er von der kaufmännischen Ausbildung
abließ, um sich mit gläsernen Apparaturen zu befassen,
und solche selbst aus Glas zu formen, dazu schweigt seine
Biografie.

Um präzise Thermometer und Barometer herstellen zu
können, musste er extrem genaue und gleichmäßig dünne
Glasröhren ziehen — etwas, das ihm die Glasbläser seiner
Zeit meist nicht in der nötigen Qualität lieferten. Deshalb
lernte er selbst das Glasblasen in Amsterdam und auch
auf Reisen in England und in Dänemark bei Ole Rømer.
Er perfektionierte die Technik so weit, dass er sehr dün-
ne und gleichmäßige Glasröhren herstellen konnte, ein
hochpräziser wissenschaftlicher Instrumenten–Glasbläser.

Fahrenheit–Skala

Die Röhrchen machen, in die sich eine Flüssigkeit ausdeh-
nen und damit Temperarturen anzeigen kann, ist das eine.
Das Prinzip ist einfach: Die Flüssigkeit in der kleinen
Glasblase am Ende des Röhrchens kann sich nur in den
freien Raum, in die Kapilare hinein ausdehnen. Je feiner
das Röhrchen, je mehr Weg macht selbst die kleinste
Ausdehnung.

Er nahm Quecksilber als Ausdehnungsflüssigkeit, wohl,
weil dessen Ausdehnungskoeffizient kaum temperaturab-
hängig ist, im Gegensatz zu Alkohol, und es größere Mess-
bereiche ermöglichte. Quecksilber gefriert bei –38,8 °C und
siedet erst bei 357 °C.

Eine Skala an diese Röhrchen anzubringen, ist die ande-
re Sache. Ich schätze mal, jedes einzelne Thermometer
musste geeicht werden, selbst wenn die Röhrchen noch
so fein gemacht wurden, genau gleich werden sie nicht
gewesen sein. Und wie macht man mit geometrischen Mit-
teln, also Zirkel und Lineal, fein unterteilte gleichlange
Einteilungen?

Interessant fand ich, dass Fahrenheit Vielfache von 6 ge-
nommen hat: 96=6x16. Die Sechstel ergeben sich im Kreis
durch den fortgesetzten Zirkelschlag mit dem Radius, die
bekannte Rosette. Gedreht um einen rechten Winkel, er-
gibt es die bekannten 12 Teile der Uhr usw. Und mit der
96–Teilung kann man schon feinteilige Skalen drucken.
Mit einem kleineren und einem größeren solchen Maß
und einer Drahtharfe dazwischen aufgespannt kann man
Röhrchen variierender Längen passabel skalieren, wenn
man zwei praktische Fixpunkte an Temperaturen hat.

Bleibt noch das Problem der praktischen Eichung. Ein-
fach zu handhaben und billig herzustellen. Die eigene
Körpertemperatur als den einen Endpunkt der Skala zu
benutzen, ist genial, die hat ja jeder Handwerker immer
dabei. Der andere Endpunkt, ein möglichst tiefer Wert,
war schon schwieriger. Es musste auf jeden Fall etwas
sein, dass kälter als Wasser am Gefrierpunkt8 ist. Denn
es war schon klar, dass Eis auch kälter als Wasser an
seinem Gefrierpunkt werden kann, und somit Messungen
in den Bereich hinein erforderlich waren.

Mit der Kältemischung aus Eis + Salz + Salmiak (NH4Cl)
erreichte er stabil etwa –17,8 °C (0 °F). Er schrieb explizit,
dass man diese Mischung „jederzeit“ herstellen könne,
auch im Sommer.

Man nahm dazu zerstoßenes Eis oder Schnee, mischte
es in einem Holzgefäß mit dem Salz, rührte kräftig um
und tauchte das Thermometerrohr direkt in die breiige
Mischung, bis die Flüssigkeitssäule stehen blieb. Das dau-
erte nur wenige Minuten und war das ganze Jahr über
möglich — solange man Eis im Keller lagerte oder im
Winter erntete. Eiskeller sollen damals in Amsterdam,
London und Paris normal gewesen sein, sagt man. Also
erst rein in den Bottich, danach am Körper warm ge-
macht, schon hat man den unteren und oberen Punkt am
Röhrchen markiert. An die Drahtharfe gehalten, lässt sich
sodann die 96er–Skala auswählen in Form des passenden
Elfenbeinplättchens.9

Feinmechanik mit einfachen Mitteln und dennoch genauer
als alles, was es damals gemeinhin gab.

Celsius

Er wurde nicht aus handwerklicher oder instrumenten-
baulicher Leidenschaft Thermometerbauer. Celsius kam
zum Thermometerbau aus einem anderen Grund.

Als er Professor für Astronomie in Uppsala wurde, über-
nahm er auch die Leitung des neuen Observatoriums
(fertig 1741). Er wollte dort tägliche, langjährige und in-
ternational vergleichbare Wetteraufzeichnungen einführen
— das war damals ein großes europäisches Projekt (z. B.
auch in Paris, London, St. Petersburg); Klimaforschung
sozusagen. Dafür brauchte er viele identische, stabile und
einfach zu vergleichende Thermometer.

Auf seiner großen Europareise — Berlin, Paris, London,
Italien — traf er die führenden Physiker und Instrumen-
tenmacher. Dort sah er die neuesten Quecksilberthermo-
meter von Réaumur (mit 80°–Skala) und die Probleme
der alten Alkoholthermometer (unterschiedliche Eichun-
gen, starke Temperaturabhängigkeit des Alkohols).

Die in Schweden verfügbaren Thermometer, meist mit
Alkohol, teils Réaumur–Skala, teils Fahrenheit–Kopien,
wichen um 5–10° voneinander ab. So ließ er in Stock-
holm und Uppsala selbst Quecksilberthermometer bauen,
hauptsächlich durch den Instrumentenmacher Daniel

8 Schnee–Wasser–Gemisch
9 Aus Elfenbein geschnitzte Skalen waren damals bei Hofe beliebt. Einfache Leute konnten sich Fahrenheits Thermometer eh nicht leisten.

1/2026 Forth–Magazin Vierte Dimension 25

Von Fahrenheit, Celsius und der Bruchrechnung

Ekström. und er wollte eine Skala, die „einfach, dezi-
mal und an die Naturphänomene gebunden“ war, also
„100° zwischen den beiden wichtigsten Fixpunkten des
Wassers“.

100° = Schmelzpunkt von Eis — 0° = Siedepunkt von
Wasser

Ja, so herum dachte er sich das, also genau umgedreht,
wie wir es heute kennen!

Das war damals logisch für ihn. Der tiefere Punkt sollte
die höhere Zahl haben. Außerdem war der Siedepunkt
wetterabhängig (Luftdruck!), der Eispunkt aber „ jeder-
zeit reproduzierbar“ und daher sollte er die „sichere“ 100
haben.

Celsius selbst hat nie die umgedrehte Skala benutzt, son-
dern seine „verkehrte“.

Umgedreht haben das wohl erst nach seinem Tod zwei
Personen fast gleichzeitig. 1743/44 Christin in Lyon (ein
Schüler von Réaumur) und 1745–1750 Carl von Linné
und Pehr Elvius in Uppsala, weil es ihnen praktischer
erschien (0° unten, 100° oben). Das setzte sich weltweit
durch und wurde dann „Celsius–Skala“ genannt.

Foto: Dr. Manuel

Abbildung 2: Ole Rømers

Ole Rømers10

Und wenn wir schon dabei sind, sollte auch dieser Astro-
nom erwähnt werden. Er entwickelte eines der ersten

wirklich brauchbaren und reproduzierbaren Thermome-
ter mit fester Skala mehrere Jahrzehnte vor Fahrenheit.
Rømer stellte allerdings Thermometer her mit rot gefärb-
tem Weinspiritus, bereits mit zwei fixen Punkten und
präziser Glasbläserei. Er verwendete auch schon die Käl-
temischung aus Eis + Salz, dem tiefsten Punkt, den man
im Winter erreichen konnte — 0 °Rø (ca. –17,8 °C) und
legte den Siedepunkt von Wasser bei Normaldruck auf
60 °Rø (100 °C).

Der junge Fahrenheit hat Ole Rømer in Kopenhagen be-
sucht und sah dort die Idee der zwei reproduzierbaren Fix-
punkte und die extrem präzise Glasbläserei. Fahrenheit
übernahm und verfeinerte das, hat also die Rømer–Skala
im Prinzip nur „gestreckt“, aber eben auch die Eichung
der Röhrchen vereinfacht und sozusagen die Serienpro-
duktion erst ermöglicht.

[Anmerkung: 1676 wurde Rømer zum königlich–dänischen
Astronomen ernannt. Als solcher wurde man wohl gemalt.
Von Fahrenheit und Celsius gibt es keine solchen schönen
Bilder für die Nachwelt — und die Fotografie war noch
nicht erfunden. J. N. Niépces „Blick aus dem Arbeitszim-
mer“ war 1826. Es ist die älteste erhaltene Fotografie, auf
einer asphaltbeschichteten Zinnplatte gemacht, aber ich
schweife ab . . .]

Und heute . . .

. . . wissen wir vom Zusammenhang von Ausdehnung und
Strahlung. So ein elektronisches Thermometer, das die
Wärmestrahlung misst, also ohne Kontakt zur Oberflä-
che, heißt Infrarot–Thermometer, Pyrometer oder um-
gangssprachlich „Fieberthermometer mit Stirnscan“ und
„Ohrthermometer“ oder „Infrarot–Temperatursensor“.

Über eine kleine Linse wird die Infrarotstrahlung von
einem definierten Messfleck (z. B. auf der Stirn) auf den
Temperatur–Sensor fokussiert. Die Differenz zwischen der
Strahlung des Objekts und der eigenen Gehäusetempe-
ratur ergibt die Oberflächentemperatur. Darum ist ein
zweiter Temperatursensor im Gerät selbst und ein Mi-
krocontroller berechnet daraus die tatsächliche Oberflä-
chentemperatur am zu messenenden Objekt. Und macht
natürlich die Anzeige der Temperatur auf einem kleinen
Display.

Womit wir wieder bei Forth und EMIT angekommen sind.
Werft doch mal einen Blick in unser Forth–Wiki. Im Pro-
jekt Forth Works gibts auch allerlei zu Sensoren. Und
ein Blick auf eure Lieblings–MCU zeigt vielleicht sogar
den darin verbauten Temperatursensor an einem internen
ADC–Portpin.

mk

10 Ole Rømer (1644–1710), Däne; bekannt durch die erste Messung der Lichtgeschwindigkeit.

26 Forth–Magazin Vierte Dimension 1/2026

25 Jahre AATiS e.V.

25 Jahre AATiS e.V.
Euer Kolumnist

Ihr wisst noch, was uns, die Forth–Gesellschaft, mit denen, dem Arbeitskreis Amateurfunk und Telekommunikation in
der Schule e.V., verbindet? Genau, steht in unserer Satzung! Jener Verein wird uns dereinst beerben. Und ich vermute
mal, den AATiS e.V. wird es dann auch tatsächlich noch geben . . .

Und zwar, weil der AATiS e.V. jünger ist als wir es sind,
denn sein Nachwuchs kommt direkt aus den Schulen. Die
Gründungsmitglieder waren weitsichtig.

„Vor 25 Jahren, am 24. September 1994 wurde in
Harsum bei Hildesheim der Arbeitskreis Amateur-
funk und Telekommunikation in der Schule als ein-
getragener Verein konstituiert. Ein Teil der zwölf
Gründungsmitglieder, darunter Wolfgang Lipps
DL4OAD, Harald Görlich DK9AC, Oliver Amend
DG6BCE, Jörg Stotz DL6OAA und Carsten Bö-
ker DG6OU, hatten schon seit mehr als 15 Jahren
intensiv und engagiertest zusammengearbeitet. Im
Laufe der Jahre ist der Arbeitskreis auf über 600
Mitglieder im gesamten Bundesgebiet und mehre-
ren angrenzenden Ländern angewachsen.

Eine jährlich wiederkehrende Veranstaltung vom
AATiS e.V. ist der „Bundeskongress für Amateur-
funk und Telekommunikation an Schulen“, der im
Jahr 2020 zum 35. Mal stattfindet und die bereits
lange vor der Vereinsgründung zum jährlichen An-
gebot gehörte.

Aus den Bundeskongressen ging auch der „blaue
Ordner“ Amateurfunk in Schule und Weiterbil-
dung mit dem DARC hervor. Aus ihm entstanden
dann die Praxishefte, von denen inzwischen 29
Ausgaben erschienen sind. Die Jubiläumsausgabe
mit der Nummer 30 wird dann zum 35. Bundes-
kongress erscheinen.

Seit fünf Jahren wird der Verein durch Harald
Schönwitz, DL2HSC, geführt und hat deshalb sei-
nen Sitz in Börnichen / Erzgebirge.“ [Zitat: https:
//www.aatis.de/content/25-jahre-aatis-ev]

Na gut, in unserer Satzung heißt es noch:

„16. Auflösung

. . . fällt das Vermögen des Vereins an den Ar-
beitskreis Amateurfunk in der Schule AATis eV,
Sedanstr. 24, 31177 Harsum, der es ausschließlich
und unmittelbar für gemeinnützige Zwecke zur
Förderung von Wissenschaft und Forschung oder
Bildung zu verwenden hat.“

Ich denke, die genaue Adresse kann man ersetzen durch
so etwas wie „Sitz wie im Vereinsregister angegeben“, die
aktuelle Anschrift wird dort verzeichnet sein. Auch wir
wandern ja durch die Zeit und verlegen aus ebensolchen
praktischen Gründen den Vereinssitz besser dorthin, wo
die Vereinsführung inzwischen ist.

Das war nun für lange Zeit Hamburg, weil die Gründungs-
mitglieder Ulrich Hoffmann, Klaus Schleisiek, An-
dreas Goppold und andere aus Hamburg waren. Ulrich
ist dem Verein treu geblieben, lange auch als Vorstand.
Doch zurück zum AATiS.

Der AATiS stellt sich vor . . .

„Der Arbeitskreis Amateurfunk und Telekommuni-
kation in der Schule (AATiS) e.V. als gemeinnützi-
ger Verein ist ein kompetenter Partner für Lehrer,
Jugendleiter, Ausbilder in der Industrie und wei-
tere Interessenten sowie Schüler und Jugendliche.
Zur Nachwuchsarbeit schult und bedient er sich
Multiplikatoren, weil dadurch effektives Arbeiten
gewährleistet ist. Die von ihm ausgearbeitete und
erprobte Seminardidaktik wird geschätzt . . .

Der AATiS e.V. beschäftigt sich intensiv mit den
folgenden Bereichen:

• Amateurfunkanwendungen

• Telekommunikation und Netze

• Meteorologie, Aerologie, Klimatologie

• Geo–/ Raumwissenschaften, Radioastronomie

• Elektronik, Sensorik, Mikrocontroller, Robotik

u. a.m.“ [Zitat: https://www.aatis.de/
content/ueber_den_aatis_ev]

Ihr seht die Schnittmenge mit Forth: Radioastronomie,
Elektronik, Sensorik, Mikrocontroller, Robotik. Und mit
IoT funkt Forth — notgedrungen oder vergnüglich —
immer mehr.

Fledermäuse im Regen

Ääh? — doch. Auch sowas wird da abgehandelt, Funk-
verbindungen und Sensorik eben.

„Zu diesem Zweck sollen Akustiklogger für Ultra-
schallrufe in Kombination mit Regensensoren und
weiteren Parametern wie Temperatur und Luft-
feuchte auf Friedhöfen installiert werden. Friedhöfe
wurden deshalb ausgewählt, weil sich diese Habi-
tate für die Fledermäuse über Jahrzehnte kaum
verändert haben und nachts relativ ungestört sind
. . . “ [ebenda]

Also klickt euch mal da durch bei unseren Erben, es ist
viel los auf deren Webseite. mk

1/2026 Forth–Magazin Vierte Dimension 27

https://www.aatis.de/content/25-jahre-aatis-ev
https://www.aatis.de/content/25-jahre-aatis-ev
https://www.aatis.de/content/ueber_den_aatis_ev
https://www.aatis.de/content/ueber_den_aatis_ev

Mini–Terminal

Mini–Terminal
Rafael Deliano

Manchmal ist ein Laptop zu unförmig. Nicht für die Entwicklung, wohl aber für den Betrieb, reichen einige farbige
Funktionstasten und ein Display für die Steuerung von Geräten (Abb. 1).

Große, helle alphanumerische LED–Anzeigen sind oft besser ablesbar als LCDs, werden aber nicht mehr hergestellt.
Obschon obsolet, dennoch erhältlich. Für Geräte, die nicht in Serie produziert werden, ist das kein Nachteil.

Die ältere Variante DL1414 von Litro-
nix wurde 1978 im AIM65 Klein-
computer verwendet. Ihre LEDs in
der „british flag“ Anordnung (Abb. 2,
links) stellen Buchstaben nur leidlich
gut dar. Hauptproblem ist die Linsen-
funktion, die eine etwa 1mm starke
rote Frontplatte in passendem Ab-
stand benötigt (Abb. 2, rechts). Zu-
dem fielen nach langer Betriebszeit
oft einzelne Segmente aus.

Alternative und Nachfolger ist die
5x7–Matrix. Wurden von HP und Sie-
mens (die Litronix gekauft hatten)
hergestellt. Es gab verschiedene Seri-
en, die letzte Variante hat die größte
Bauform und hellsten LEDs (Abb. 6).
Die Pinbelegung und Ansteuerung
sind identisch (Tabelle 1). Das Teil
ist in Europa noch häufig für etwa 25
EUR erhältlich. Die Stromaufnahme
ist abhängig von der Zahl der akti-
ven LEDs, Nennwert etwa 150mA.
Bei langen Zeilen können sie also we-
der vom Preis noch Stromverbrauch
mit den hellen VFL–Displays konkur-
rieren. Die ICs für LCD/VFL sind
CMOS, die für LEDs aber bipolar.
Das begrenzt die Komplexität. Sie
stellen ASCII, deutsche Umlaute und
einige Symbole dar, haben aber keine
per RAM definierbare Zeichen. Die
wären aber oft nützlich, wenn man
Messwert, alternativ zu numerisch,
umschaltbar auch als Bargraph dar-
stellen will.

Die Ansteuerung erfolgt über einen
Bus, der aber am Controller gleich
zwei Ports belegt (Abb. 3). Für Blink-
funktionen haben die ICs eine ge-
meinsame Taktleitung (Abb. 4).

Tastatur

Auch der National MM74C922 ist in-
zwischen obsolet, aber in DIP und
SO noch gut erhältlich. Die maximal

16 Tasten sind als Matrix verschaltet
(Abb. 5). Tastendruck wird am IRQ–
Pin gemeldet, ihr Code kann dann
über den Datenbus gelesen werden.

Das Wichtigste dabei ist eine ordent-
liche Taste, hier wird der Klassiker
Digitast verwendet.

Für Funktionstasten sind unter-
schiedliche Farben wünschenswert.
Mit Schneidplotter kann man zusätz-
lich Symbole aus schwarzer Folie1
fertigen. Da der obere Bereich der
Hebeltaste nicht berührt wird, sind
sie dort recht dauerhaft angebracht
(Abb. 7).

klein mittel groß
PD2435 PD3535 PD4435 H
PD2436 PD3536 PD4436 R
PD2437 PD3537 PD4437 G

Tabelle 1: Siemens Displays. H=high ef-
ficiency red, R=red, G=green

Abbildung 1: Breadboard–Terminal

Abbildung 2: Links: British–Flag–
Buchstabe. Rechts: DL1414 mit
Plexiglas

AW60

Display Keyboard

PB Databus

PA Control

Abbildung 3: Blockschaltbild

5V/RD
CLK

/RST
CE1
/CE0

A2
A1
A0

/CLKSEL

D0

/WR

D1
D2
D3
D4
D5
D6
D7

PD4438

PA0

PA3
PE2

PA4
PA5

PA6

PB0

PB2
PB3

PB1

PB4

PB6
PB7

PB5

PA7

5V/RD
CLK

/RST
CE1
/CE0

A2
A1
A0

/CLKSEL

D0

/WR

D1
D2
D3
D4
D5
D6
D7

PD4438

PA0

PA3
PE2

PA4
PA5

PA6

PB0

PB2
PB3

PB1

PB4

PB6
PB7

PB5

PA7

5V

Abbildung 4: Schaltung Displays

5V

1M

IRQ

MM74C922

5V

100nF

/OE
D3
D2
D1

PE7
PB4
PB5
PB6

D0

PE6

PB7

R4

R3
R2
R1

C1

C2

C3

C4

1uF

Abbildung 5: Schaltung Tastatur
1 Oracal 631.

28 Forth–Magazin Vierte Dimension 1/2026

Mini–Terminal

Abbildung 6: PD4435

Abbildung 7: Tasten mit Aufkleber

Abbildung 8: SP86 12mm

17

12,4 17,4

A0

A1

A2

B0

B1

B2

SP86
SER

SERL

SER2L

ITT SET

SETL

SET2L

Abbildung 9: Grundtypen

74LS00

Digitast

Abbildung 10: Entprellte Taste

Digitast

Diese deutschen Taster der 70er Jah-
re schienen auszusterben. Die Retro–
Welle lebt vom Image (Abb. 11). Das
verspricht hier klares Design und
Qualität. Scheint kostendeckend zu
sein, denn die Chinesen haben sie ge-
clont. Vor allem für Kleinserie sind
sie damit wieder interessant gewor-
den.

Der Grundtyp wurde 1975 von ITT–
Schadow Berlin eingeführt und spezi-
ell mit Anwendung für digitale Logik–
ICs beworben. Prellfreie mechani-
sche Tasten gibt es nicht. Aber ein
Umschalter kann ein RS–FlipFlop
steuern (Abb. 10), ein 74LSxx benö-
tigt nicht mal Pullups. Die 17–mm–
Version entspricht PC–Tasten, wäh-
rend die kleine 12–mm–Variante die
Abmessungen eines DIL14–Sockels
hat (Abb. 9), aber nicht in diesen
gesteckt werden kann. Rote 5–mm–
LEDs waren anfangs Hightech und
wurden direkt eingebaut (Abb. 8).
Während man bei deren Farben auf
rot und grün beschränkt war, wurde
die Kappe bald in allen poppigen Far-
ben der 70er Jahre angeboten. Inklu-
sive orange, das fertigen die Chinesen
heute aber nicht mehr.

Mechanik und Kappen waren vom
Anwender montierbar und wurden
auch getrennt angeboten. Mit dem
Erfolg am Markt entstand für die
Kappen bald eine Unzahl mechani-
scher Varianten, um jede Anwendung
abdecken zu können. Heute ein Alb-
traum für jeden, der Ersatzteile be-
schaffen will. ITT–Schadow wurde
2007 an C&K verkauft. Die Tasten
sind weiterhin hierzulande erhältlich,
aber für 5. . . 7 EUR unattraktiv.

Die SP86–Serie aus China für ca.
1 EUR beschränkt sich auf die Grund-
typen in 7 gängigen Farben. Die
LEDs sind rot oder rot/grün. Neben
dem spürbaren Schaltpunkt ist auch
der dezente akustische „Click“ erhal-
ten geblieben.

Abbildung 11: Messgerät 80er Jahre

1/2026 Forth–Magazin Vierte Dimension 29

Mini–Terminal

Listing 1
1 <| \ Display.txt
2
3 \ PB 0 ... PB 7 databus input
4
5 \ PA 4 DCONSTANT A2-DSP \ o 0
6 \ PA 5 DCONSTANT A1-DSP \ o 0
7 \ PA 6 DCONSTANT A0-DSP \ o 0
8 \ PA 7 DCONSTANT /WR-DSP \ o 1
9 \ PA 0 DCONSTANT /RD-DSP \ o 1

10 \ PA 3 DCONSTANT /RST-DSP \ o 0
11 \ PE 2 DCONSTANT CE1-DSP1 \ o 0
12 \ PE 3 DCONSTANT CE1-DSP2 \ o 0
13
14
15 : +DISP1 CE1-DSP1 B1! ; \ (---)
16 : +DISP2 CE1-DSP2 B1! ;
17 : -DISP1 CE1-DSP1 B0! ;
18 : -DISP2 CE1-DSP2 B0! ;
19
20 \ addr
21 \ 000 control
22 \ 100 digit 0
23 \ 101 digit 1
24 \ 110 digit 2
25 \ 111 digit 3
26
27 \ control word
28 \ 7 6 5 4 3 2 10
29 \ 01 0= off ; 1 = dim ;
30 \ 2 = medium ; 3 = bright
31 \ 000 attributes disabled
32 \ 0 blink disabled
33 \ 0 lamp test disabled
34 \ 0 clear disabled
35
36 : (ADR!) \ (adr bit mask ---)
37 AND IF B1! ELSE B0! THEN ;
38
39 : ADR! \ (adr ---)
40 A0-DSP HOPP B% 001 (ADR!)
41 A1-DSP HOPP B% 010 (ADR!)
42 A2-DSP ROT B% 100 (ADR!) ;
43
44 : DISP-C! \ (UC1 adr ---)
45 FF DPB C! ADR! PB C!
46 /WR-DSP B0! /WR-DSP B1! 00 DPB C! ;
47
48 : DISP-C@ \ (adr --- UC1)
49 ADR! /RD-DSP B0! PB C@ /RD-DSP B1! ;
50
51 : INIT-DISP \ (---)

52 /RST-DSP B0! 1 MSEC /RST-DSP B1!
53 +DISP1
54 01 0 DISP-C!
55 41 B% 111 DISP-C!
56 42 B% 110 DISP-C!
57 43 B% 101 DISP-C!
58 44 B% 100 DISP-C!
59 -DISP1
60 +DISP2
61 01 0 DISP-C!
62 30 B% 111 DISP-C!
63 31 B% 110 DISP-C!
64 32 B% 101 DISP-C!
65 33 B% 100 DISP-C!
66 -DISP2 ;
67
68 \ (---)
69 : OFF
70 +DISP2 0 0 DISP-C! -DISP2 +DISP1 0 0 DISP-C! -DISP1 ;
71 : DIM
72 +DISP2 1 0 DISP-C! -DISP2 +DISP1 1 0 DISP-C! -DISP1 ;
73 : MEDIUM
74 +DISP2 2 0 DISP-C! -DISP2 +DISP1 2 0 DISP-C! -DISP1 ;
75 : BRIGHT
76 +DISP2 3 0 DISP-C! -DISP2 +DISP1 3 0 DISP-C! -DISP1 ;
77
78 \ INIT INIT-DISP
79 |>
80

Listing 2
1 <| \ Keyboard.txt
2
3 HEX
4
5 \ PB4 .. PB7 databus input
6 \ PE 6 DCONSTANT IRQ-KB \ i
7 \ PE 7 DCONSTANT /OE-KB \ o 1
8
9 : KB? \ (--- UC1 1) UC1 = 0...F

10 \ --- 0)
11 IRQ-KB B@ IF
12 /OE-KB B0! PB C@ /OE-KB B1!
13 4SHIFT> 1 ELSE 0 THEN ;
14
15 : TEST-KB \ (---)
16 INIT
17 BEGIN
18 KB? IF CR CH. D% 1000 MSEC THEN
19 AGAIN ;
20 |>

Anmerkung zur Historie

Die Rudolf Schadow GmbH, ursprünglich aus Berlin, 1960er, wurde nach 2000 von ITT übernommen, daraus entstand
ITT–Schadow, die 2007 an C&K Components ging, zusammen mit Jeanrenaud aus Frankreich.

International Telephone and Telegraph (ITT) war ein großer, historischer US–amerikanischer Mischkonzern (gegründet
1920), der in vielen Bereichen, Telekommunikation, Elektronik, Automotive, aktiv war.

C&K steht für die beiden Gründer Charles A. Coolidge Jr. und Marshall Kincaid, 1957, USA. Der Name wurde auch
nach allen Eigentümerwechseln beibehalten.

Heute gehört C&K zu Littelfuse, ein amerikanischer Industrie–Konzern, der auf elektronische Schutz– und Steue-
rungskomponenten spezialisiert ist. Gegründet 1927 in Chicago als „Littelfuse Laboratories“ für kleine Messgeräte–
Sicherungen, hat er heute ca. 19K Mitarbeiter in >50 Produktions– und Vertriebsstandorten in Amerika, Europa,
Asien mit einem Umsatz von mehreren Milliarden USD jährlich. Starkes Wachstum durch Zukäufe, kürzlich Basler
Electric (2025), früher Zilog, C&K Switches und diverse andere Schalter– und Sensorfirmen. mk

30 Forth–Magazin Vierte Dimension 1/2026

Adressen und Ansprechpartner

Forth–Gruppen regional

Bitte erkundigt euch vorab bei den Veranstaltern, ob die
Treffen stattfinden.

Mannheim Thomas Prinz
Tel.: (0 62 71) – 28 30p
Ewald Rieger
Tel.: (0 62 39) – 92 01 85p
Treffen: jeden 1. Dienstag im Monat
Vereinslokal Segelverein Mannheim
e.V. Flugplatz Mannheim–Neuostheim

München Bernd Paysan
Tel.: (0 173) – 82 06 874

r d 2@nn t .e debe o
Treffen: Jeden 4. Donnerstag im Mo-
nat um 20:00 auf http://public.
senfcall.de/forth-muenchen, Pass-
wort over+swap, im Sommer auch wieder
um 19:00 im La Capannina, Weitlstraße
142, 80995 München

Hamburg Ulrich Hoffmann
Tel.: (04103) – 80 48 41

@ ve e- d.o tf rou hh
Treffen alle 1–2 Monate in loser Folge
Termine unter: http://forth-ev.de

Ruhrgebiet Carsten Strotmann
.@ r n edhp t t noo-t r ao st mhr tu fr

Derzeit keine Treffen.

Dienste der Forth–Gesellschaft
Nextcloud https://cloud.forth-ev.de

GitHub https://github.com/forth-ev

Twitch https://www.twitch.tv/4ther

µP–Controller–Verleih Kohl–Schöpe, Strot-
mann

co tfiervt @l hon -r l rr hr vol ec e ee .o dim
h@ .vev f - er dtm oc

Spezielle Fachgebiete

Forth–Hardware in VHDL Klaus Schleisiek
microcore (uCore) Tel.: (0 58 46) – 98 04 00 8p

ee @ ek te si .i nc f drh e eks l

KI, Object Oriented Forth, Ulrich Hoffmann
Sicherheitskritische Tel.: (0 41 03) – 80 48 41
Systeme o et do v- .f r@ ehuh

Forth–Vertrieb Ingenieurbüro
volksFORTH Klaus Kohl–Schöpe
ultraFORTH Tel.: (0 82 66)–36 09 862p

RTX / FG / Super8
KK–FORTH

Termine

Donnerstags ab 20:00 Uhr
Forth–Chat net2o forth@bernd mit dem Key
keysearch kQusJ, voller Key:
kQusJzA;7*?t=uy@X}1GWr!+0qqp_Cn176t4(dQ*

Jeder 1. Montag im Monat ab 20:30 Uhr
Forth–Abend
Videotreffen (nicht nur) für Forthanfänger
Info und Teilnahmelink: E–Mail an wost@ewost.de

Jeder 2. Samstag in ungeraden Monaten
ZOOM–Treffen der Forth2020 Facebook–Gruppe
Infos zur Teilnahme: www.forth2020.org

Details zu den Terminen unter http://forth-ev.de

Möchten Sie gerne in Ihrer Umgebung eine lokale Forth-
gruppe gründen, oder einfach nur regelmäßige Treffen
initiieren? Oder können Sie sich vorstellen, ratsuchen-
den Forthern zu Forth (oder anderen Themen) Hilfestel-
lung zu leisten? Möchten Sie gerne Kontakte knüpfen,
die über die VD und das jährliche Mitgliedertreffen
hinausgehen? Schreiben Sie einfach der VD — oder
rufen Sie an — oder schicken Sie uns eine E–Mail!

Hinweise zu den Angaben nach den Telefonnummern:
Q = Anrufbeantworter
p = privat, außerhalb typischer Arbeitszeiten
g = geschäftlich
Die Adressen des Büros der Forth–Gesellschaft e.V. und
der VD finden Sie im Impressum des Heftes.

1/2026 Forth–Magazin Vierte Dimension 31

http://public.senfcall.de/forth-muenchen
http://public.senfcall.de/forth-muenchen
http://forth-ev.de
https://cloud.forth-ev.de
https://github.com/forth-ev
https://www.twitch.tv/4ther
www.forth2020.org
http://forth-ev.de

Jahrestagung 2026
Schnell noch anmelden!

Am Wochenende nach Ostern 09. – 12. April

findet die nächste Jahrestagung und die Mitgliederver-
sammlung der Forth–Gesellschaft e.V. statt. Die Einla-
dung zur MV liegt dem Heft bei. Wie ihr dort seht, gibt
es einiges zu regeln.

Programm und Preise?

tagung.forth-ev.de

Wir haben Halbpensionspreise, also Übernachtung inklu-
sive Frühstück.

Es wird eine Tagungspauschale1 erhoben. Diese bein-
haltet den Konferenzraum und dessen Ausstattung, das
Mittagessen, die Erfrischungsgetränke, Obst, Kaffee und
Kuchen in Pausen. Am Tag der An– und Abreise wird
nur die halbe Pauschale erhoben.

Das Abendessen können wir im Haus haben oder auswärts
Essen gehen.

Gleich nebenan im Bermuda–Dreieck sind die Restaurants
und Bars von früh bis spät geöffnet.

Foto: Joker.mg

Wo?

DJH Jugendherberge
Humboldtstraße 59–63
44787 Bochum, Germany.

Das ist mitten in Bochum.

Foto: Raenmaen

Buchen!

Beeil dich, einige Plätze gibt es noch.

tagung.forth-ev.de

Oder E–Mail an secretary@forth-ev.de

Oder du rufst mich an und wir klären das:
049 157 5505 1777

Anreise

Die DJH Jugendherberge Bochum ist etwa 2 km vom
Bochumer Hauptbahnhof entfernt. Mit dem Taxi sind es
ungefähr 6 Minuten.

Parkhäuser für den eigenen Wagen sind gegenüber der
Herberge und nebenan in der City und rund um die Uhr
geöffnet.

Und wer will, kann über Dortmund einfliegen, von da
sind es 35 km zum Tagungsort, mit dem Auto ungefähr
30 Minuten und es gibt eine direkte S–Bahn–Verbindung
zum Hbf–Bochum, die Fahrt dauert etwa 40 Minuten.

Auch über den Flughafen Düsseldorf ginge das, die Fahrt
mit der Bahn von dort zum Hbf–Bochum dauert etwa 50
Minuten.

Wir sehen uns!

mk

1 Damit kann man an der Tagung auch teilnehmen, ohne im Haus zu übernachten.

tagung.forth-ev.de
tagung.forth-ev.de
secretary@forth-ev.de

	Ergebnis des Zensus
	Datenarchäologie — Wie man Osborne–Disketten heute einlesen kann
	Structs und Peripherals
	cc64 — Small–C–Compiler in Forth
	CASE — Ein ganz einfacher Fall
	Forth–Projekte auf Codeberg
	Von Fahrenheit, Celsius und der Bruchrechnung
	25 Jahre AATiS e.V.
	Mini–Terminal
	Jahrestagung 2026

