

http://www.forth-ev.de/wiki/doku.php/words:kernel_embedded:minimum_word_set

Minimum Word Set

How many primitives does a Forth need to get it started?

Surprisingly few, as you can see with Gforth EC, which provides a high-level

definition for almost every primitive.

But beware! If you omit too much, you risk circular behaviour (loops).

We need in any case:

:dodoes as generalized entry point for all high-level definitions, or 1

 Call for primitive-centric implementations.

@ and 2

! to access the memory. 3

>R and 4

R> for the return stack, so anything can be moved. 5

+ or 6

 2* for Artihmetik. And

NAND as a universal bit instruction. 7

?BRANCH or 8

 0= for branches.

 And finally

;S and 9

EXECUTE for execution. 10

Everything else can be defined from these words,

even if it then needs temporary variables:

: lit' r> @ ;

: cell lit' [2 ,] ; \ oder 4 oder 8 ...

: tmp1 lit' [here cell+ , 0 ,] ;

: dup tmp1 ! tmp1 @ tmp1 @ ;

: lit r> dup cell + >r @ ;

By Bernd Paysan

Translation Juergen Pintaske 2015_11_21

http://www.forth-ev.de/wiki/doku.php/words:kernel_embedded:minimum_word_set

