Benutzer-Werkzeuge

Webseiten-Werkzeuge


projects:4e4th:4e4th:start:msp430g2553_experimente

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen RevisionVorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
projects:4e4th:4e4th:start:msp430g2553_experimente [2018-07-24 01:55] – [Stroboskop] mkaprojects:4e4th:4e4th:start:msp430g2553_experimente [2018-08-11 08:56] (aktuell) – [PWM-Signal am RC-Glied] mka
Zeile 200: Zeile 200:
 An Portpin P2.5 kommt das PWM-Signal an, und geht über einen Widerstand R an den Kondensator C, dessen anderer Anschluss an Masse liegt. Bei x wird das resultierende Signal ((Die Stelle x enspricht der Ausgangsspannung Ua im Tiefpass)) im [[http://de.wikipedia.org/wiki/RC-Glied|RC-Glied]] abgenommen. Ich habe R=10K und einen kleinen blauen Stützkondensator genommen von ca. C=100nF, aufgebaut wieder auf dem Steckbrett.  An Portpin P2.5 kommt das PWM-Signal an, und geht über einen Widerstand R an den Kondensator C, dessen anderer Anschluss an Masse liegt. Bei x wird das resultierende Signal ((Die Stelle x enspricht der Ausgangsspannung Ua im Tiefpass)) im [[http://de.wikipedia.org/wiki/RC-Glied|RC-Glied]] abgenommen. Ich habe R=10K und einen kleinen blauen Stützkondensator genommen von ca. C=100nF, aufgebaut wieder auf dem Steckbrett. 
  
-Wenn die PWM-Frequenz hoch genug ist, wird die Ausgangsspannung des PWM gemittelt. Das sorgt dafür, dass bei gleichbleibender Pulsweite eine Gleichspannung entsteht. Wenn das Verhältnis Puls/Pause 50% ist, dann entspricht diese Gleichspannung der halben Speisespannung. Wird der Puls länger, erhöht sich die Spannung, und wird der Puls kürzer, wird die Spannung geringer. {{:projects:4e4th:4e4th:start:msp430g2553_experimente:pwm_rc.webm|Im Film}} ist das gut zu sehen. Die Spannung bei x geht immer rauf und wieder runter, je nach Pulsbreite, bei gleichbleibender PWM-Frequenz. Das Forth-Programm dazu [[projects:4e4th:4e4th:start:msp430g2553_experimente:PWM_an_RC|PWM_an_RC]] zeigt, wie es gemacht worden ist. +Wenn die PWM-Frequenz hoch genug ist, wird die Ausgangsspannung des PWM gemittelt. Das sorgt dafür, dass bei gleichbleibender Pulsweite eine Gleichspannung entsteht. Wenn das Verhältnis Puls/Pause 50% ist, dann entspricht diese Gleichspannung der halben Speisespannung. Wird der Puls länger, erhöht sich die Spannung, und wird der Puls kürzer, wird die Spannung geringer.  
 + 
 +{{:projects:4e4th:4e4th:start:msp430g2553_experimente:pwm_rc.webm|Integrierer}} 
 + 
 +Im Film ist das gut zu sehen. Die Spannung bei x geht immer rauf und wieder runter, je nach Pulsbreite, bei gleichbleibender PWM-Frequenz. Das Forth-Programm dazu [[projects:4e4th:4e4th:start:msp430g2553_experimente:PWM_an_RC|PWM_an_RC]] zeigt, wie es gemacht worden ist. 
  
 {{:projects:4e4th:4e4th:start:msp430g2553_experimente:pwm_rc_1.jpg?100|Rechtecksignal (PWM), Spannung an x liegt nur etwas über Masse. PWM mit kurzem Puls}}{{:projects:4e4th:4e4th:start:msp430g2553_experimente:pwm_rc_2.jpg?100|Rechtecksignal (PWM), Spannung an x liegt mittig. Tastverhältnis PWM ca. 1:1}}{{:projects:4e4th:4e4th:start:msp430g2553_experimente:pwm_rc_3.jpg?100|Rechtecksignal (PWM), Spannung an x liegt schon weit oben in der Nähe der Versorgunsspannung. PWM mit langem Puls}}{{:projects:4e4th:4e4th:start:msp430g2553_experimente:launchpad_rc-glied.jpg?100|Steckbrettaufbau}} {{:projects:4e4th:4e4th:start:msp430g2553_experimente:pwm_rc_1.jpg?100|Rechtecksignal (PWM), Spannung an x liegt nur etwas über Masse. PWM mit kurzem Puls}}{{:projects:4e4th:4e4th:start:msp430g2553_experimente:pwm_rc_2.jpg?100|Rechtecksignal (PWM), Spannung an x liegt mittig. Tastverhältnis PWM ca. 1:1}}{{:projects:4e4th:4e4th:start:msp430g2553_experimente:pwm_rc_3.jpg?100|Rechtecksignal (PWM), Spannung an x liegt schon weit oben in der Nähe der Versorgunsspannung. PWM mit langem Puls}}{{:projects:4e4th:4e4th:start:msp430g2553_experimente:launchpad_rc-glied.jpg?100|Steckbrettaufbau}}
Zeile 412: Zeile 416:
 Die Versuche zeigen auch, dass so ein Schrittmotor dazu da ist, ganze Schritte zu vollführen. Und in den Vollschrittpositionen stehen zu bleiben. Die Halbschritte sind nur dazu da, den Motor glatter drehen zu lassen, damit wird der wellige ruckelnde Verlauf gemildert. Halten sollte man in den Halbschrittpositionen aber nicht in echten Anwendungen. Halbe Positionen sind instabil, und wenn dort aktiv gehalten wird mit längeren Pulsen oder gar Dauerstrom, gehen die Spulen in die Ohmsche Betriebsart über, und werden heiß. In den vollen Schritten hingegen hält der Stepper passiv auch stromlos fest. Dazu sind sie gebaut. Die Versuche zeigen auch, dass so ein Schrittmotor dazu da ist, ganze Schritte zu vollführen. Und in den Vollschrittpositionen stehen zu bleiben. Die Halbschritte sind nur dazu da, den Motor glatter drehen zu lassen, damit wird der wellige ruckelnde Verlauf gemildert. Halten sollte man in den Halbschrittpositionen aber nicht in echten Anwendungen. Halbe Positionen sind instabil, und wenn dort aktiv gehalten wird mit längeren Pulsen oder gar Dauerstrom, gehen die Spulen in die Ohmsche Betriebsart über, und werden heiß. In den vollen Schritten hingegen hält der Stepper passiv auch stromlos fest. Dazu sind sie gebaut.
  
-Es gibt ausgefuchstere Steuerungen, um Schrittmotoren anzusteuern, und Bausteine die das unterstützen, [[http://www.ti.com/lit/ml/sprt527/sprt527.pdf|z.B. Piccolo Motor Control]]. Das herauszufinden überlasse ich aber eurem Spieltrieb. Hier ging es mir um ein grundlegendes Experiment, um die Arbeitsweise des Motörchens zu erkennen.+Es gibt ausgefuchstere Steuerungen, um Schrittmotoren anzusteuern, und Bausteinedie das unterstützen. Das herauszufinden überlasse ich aber eurem Spieltrieb. Hier ging es mir um ein grundlegendes Experiment, um die Arbeitsweise des Motörchens zu erkennen.
 ====== Einfache Forth-Programme für die Experimente ====== ====== Einfache Forth-Programme für die Experimente ======
  
projects/4e4th/4e4th/start/msp430g2553_experimente.1532390120.txt.gz · Zuletzt geändert: 2018-07-24 01:55 von mka